
Two identified parallel plate capacitors A and B are connected to a battery of V volts with the switch S closed. The switch is now opened and the free space between the plates of the capacitors is filled with a dielectric of dielectric constant K. Find the ratio of the total electrostatic energy stored in both capacitors before and after the introduction of the dielectric.

Answer
466.8k+ views
1 likes
Hint: It is given that when the switch is closed, there is a current V flowing through the capacitors. Find the total energy by adding up the energy contributed by each capacitor. When the switch is opened and the di-electric is filled in between, calculate the total energy in this case and find the ratio of the same.
Complete step by step answer
When switch S is closed, there is a current I flowing through the circuit which has a potential difference of V volts from the source. Energy emitted by a capacitor in this case is expressed as the product of its capacitance and the square of the voltage flowing through the capacitor. This is mathematically represented as ,
(where C is the capacitance of the capacitor and V is the voltage flowing across)
Now when switch S is closed, the total energy given out by the system is given as,
Where is energy given out by capacitor A and is energy given out by capacitor B.
The overall energy can be written as ,
Now, when the switch is open and the di-electric of di-electric constant K is inserted between the parallel plate capacitors, there will be a flow of voltage V across the capacitor A. Whereas in capacitor B the stored voltage will be flowing across the plates, which is denoted by . Now , total energy of the system is again the sum of the individual energy possessed by the capacitors
Now, energy across the capacitor A is given as,
, Where K is the di-electric constant.
In case of capacitor B, the voltage flowing across the plates will be the stored voltage . This can be represented as . Using this, the energy across capacitor B is,
On substituting and cancelling the common term, we get,
Now total energy is given as,
On substituting ,
Taking the common term, we get,
On simplifying, we get,
Now, the ratio between the first and second case is given as ,
On removing the common term and taking the denominator term to numerator , we get,
Hence, the ratio of the total electrostatic energy stored in both capacitors before and after introduction of di-electric is found out.
Note
In a parallel plate capacitor setup, the capacitance depends upon the charge flowing between the plate and the Voltage applied through the circuit, the area between the plate and the permissibility factor.
Complete step by step answer
When switch S is closed, there is a current I flowing through the circuit which has a potential difference of V volts from the source. Energy emitted by a capacitor in this case is expressed as the product of its capacitance and the square of the voltage flowing through the capacitor. This is mathematically represented as ,
Now when switch S is closed, the total energy given out by the system is given as,
Where
The overall energy can be written as ,
Now, when the switch is open and the di-electric of di-electric constant K is inserted between the parallel plate capacitors, there will be a flow of voltage V across the capacitor A. Whereas in capacitor B the stored voltage will be flowing across the plates, which is denoted by
Now, energy across the capacitor A is given as,
In case of capacitor B, the voltage flowing across the plates will be the stored voltage
On substituting and cancelling the common term, we get,
Now total energy
On substituting ,
Taking the common term, we get,
On simplifying, we get,
Now, the ratio between the first and second case is given as ,
On removing the common term and taking the denominator term to numerator , we get,
Hence, the ratio of the total electrostatic energy stored in both capacitors before and after introduction of di-electric is found out.
Note
In a parallel plate capacitor setup, the capacitance depends upon the charge flowing between the plate and the Voltage applied through the circuit, the area between the plate and the permissibility factor.
Latest Vedantu courses for you
Grade 11 Science PCM | CBSE | SCHOOL | English
CBSE (2025-26)
School Full course for CBSE students
₹41,848 per year
Recently Updated Pages
Master Class 4 Maths: Engaging Questions & Answers for Success

Master Class 4 English: Engaging Questions & Answers for Success

Master Class 4 Science: Engaging Questions & Answers for Success

Class 4 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Give 10 examples of unisexual and bisexual flowers

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE
