Answer
Verified
417.3k+ views
Hint: We first join A and E and express the angle between them in terms of r and D. After that, we find the length of the arc EFD in terms of this angle. We then find some fundamental areas like the area of sector AEFD, triangle AED and so on and then simplify these expressions to get the final equations. At last, we put the given values.
Complete step by step answer:
In the given figure, $AG=\dfrac{AB}{2}=\dfrac{D}{2}$ . Again, $AE=r$ . This means that,
$\begin{align}
& \Rightarrow \cos \theta =\dfrac{AG}{AE}=\dfrac{\dfrac{D}{2}}{r}=\dfrac{D}{2r}....\left( 1 \right) \\
& \Rightarrow \theta ={{\cos }^{-1}}\left( \dfrac{D}{2r} \right) \\
\end{align}$
The arc ED can be expressed in terms of the angle $\theta $ and the radius of the circle r. This can be done by,
$\begin{align}
& \overset\frown{EFD}=r\times 2\theta \\
& \Rightarrow \overset\frown{EFD}=2r{{\cos }^{-1}}\left( \dfrac{D}{2r} \right) \\
\end{align}$
Due to symmetricity of the figure, we can say that the other arc ED is same that that of the arc EFD. So, the total perimeter of the region becomes,
$\begin{align}
& P=2\times \overset\frown{EFD} \\
& \Rightarrow P=2\times 2r{{\cos }^{-1}}\left( \dfrac{D}{2r} \right) \\
& \Rightarrow P=4r{{\cos }^{-1}}\left( \dfrac{D}{2r} \right)....\left( 2 \right) \\
\end{align}$
The area of one of the circles is $area=\pi {{r}^{2}}$ . The area of the sector AEFD must be some fraction of the area of the circle and this fraction will be $\dfrac{2\theta }{2\pi }=\dfrac{\theta }{\pi }$ . Thus, the area of the sector AEFD will be,
$\begin{align}
& area(AEFD)=\dfrac{\theta }{\pi }\times \pi {{r}^{2}} \\
& \Rightarrow area(AEFD)=\theta {{r}^{2}} \\
& \Rightarrow area(AEFD)={{r}^{2}}{{\cos }^{-1}}\left( \dfrac{D}{2r} \right) \\
\end{align}$
Area of the triangle AED will be,
$\begin{align}
& area\left( \Delta AED \right)=\dfrac{1}{2}\times ED\times AG \\
& \Rightarrow area\left( \Delta AED \right)=\dfrac{1}{2}\times \left( 2\times r\sin \theta \right)\times \dfrac{D}{2} \\
& \Rightarrow area\left( \Delta AED \right)=\dfrac{Dr\sin \theta }{2} \\
\end{align}$
From equation $\left( 1 \right)$ , we get $\sin \theta =\sqrt{1-{{\left( \dfrac{D}{2r} \right)}^{2}}}$ . Using this value in the above equation, we get,
$\Rightarrow area\left( \Delta AED \right)=\dfrac{Dr}{2}\sqrt{1-{{\left( \dfrac{D}{2r} \right)}^{2}}}$
Thus, the area of the segment EFDE will be,
\[\begin{align}
& area(EFDE)=area(AEFD)-area(\Delta AED) \\
& \Rightarrow area(EFDE)={{r}^{2}}{{\cos }^{-1}}\left( \dfrac{D}{2r} \right)-\dfrac{Dr}{2}\sqrt{1-{{\left( \dfrac{D}{2r} \right)}^{2}}} \\
\end{align}\]
Thus, the total area of the shaded region will be,
$\begin{align}
& A=2\times area(EFDE) \\
& \Rightarrow A=2\times \left( {{r}^{2}}{{\cos }^{-1}}\left( \dfrac{D}{2r} \right)-\dfrac{Dr}{2}\sqrt{1-{{\left( \dfrac{D}{2r} \right)}^{2}}} \right)....\left( 3 \right) \\
\end{align}$
If we put the values of $r=4$ , $D=6$ in the equations $\left( 2 \right),\left( 3 \right)$ , we get,
$\begin{align}
& \Rightarrow P=4\left( 4 \right){{\cos }^{-1}}\left( \dfrac{6}{2\times 4} \right) \\
& \Rightarrow P=11.56 \\
\end{align}$ and $\begin{align}
& \Rightarrow A=2\times \left( {{\left( 4 \right)}^{2}}{{\cos }^{-1}}\left( \dfrac{6}{2\left( 4 \right)} \right)-\dfrac{6\times 4}{2}\sqrt{1-{{\left( \dfrac{6}{2\times 4} \right)}^{2}}} \right) \\
& \Rightarrow A=7.25 \\
\end{align}$
Therefore, we can conclude that the perimeter is $11.56$ and the area is \[7.25\] of the shaded region.
Note: This problem is pretty long and thus requiring tremendous patience. In such problems, we should at first figure out a way in which we can find out the required perimeter and area and then proceed accordingly. We must always take the value of the angles in radians otherwise; it will lead to wrong answers.
Complete step by step answer:
In the given figure, $AG=\dfrac{AB}{2}=\dfrac{D}{2}$ . Again, $AE=r$ . This means that,
$\begin{align}
& \Rightarrow \cos \theta =\dfrac{AG}{AE}=\dfrac{\dfrac{D}{2}}{r}=\dfrac{D}{2r}....\left( 1 \right) \\
& \Rightarrow \theta ={{\cos }^{-1}}\left( \dfrac{D}{2r} \right) \\
\end{align}$
The arc ED can be expressed in terms of the angle $\theta $ and the radius of the circle r. This can be done by,
$\begin{align}
& \overset\frown{EFD}=r\times 2\theta \\
& \Rightarrow \overset\frown{EFD}=2r{{\cos }^{-1}}\left( \dfrac{D}{2r} \right) \\
\end{align}$
Due to symmetricity of the figure, we can say that the other arc ED is same that that of the arc EFD. So, the total perimeter of the region becomes,
$\begin{align}
& P=2\times \overset\frown{EFD} \\
& \Rightarrow P=2\times 2r{{\cos }^{-1}}\left( \dfrac{D}{2r} \right) \\
& \Rightarrow P=4r{{\cos }^{-1}}\left( \dfrac{D}{2r} \right)....\left( 2 \right) \\
\end{align}$
The area of one of the circles is $area=\pi {{r}^{2}}$ . The area of the sector AEFD must be some fraction of the area of the circle and this fraction will be $\dfrac{2\theta }{2\pi }=\dfrac{\theta }{\pi }$ . Thus, the area of the sector AEFD will be,
$\begin{align}
& area(AEFD)=\dfrac{\theta }{\pi }\times \pi {{r}^{2}} \\
& \Rightarrow area(AEFD)=\theta {{r}^{2}} \\
& \Rightarrow area(AEFD)={{r}^{2}}{{\cos }^{-1}}\left( \dfrac{D}{2r} \right) \\
\end{align}$
Area of the triangle AED will be,
$\begin{align}
& area\left( \Delta AED \right)=\dfrac{1}{2}\times ED\times AG \\
& \Rightarrow area\left( \Delta AED \right)=\dfrac{1}{2}\times \left( 2\times r\sin \theta \right)\times \dfrac{D}{2} \\
& \Rightarrow area\left( \Delta AED \right)=\dfrac{Dr\sin \theta }{2} \\
\end{align}$
From equation $\left( 1 \right)$ , we get $\sin \theta =\sqrt{1-{{\left( \dfrac{D}{2r} \right)}^{2}}}$ . Using this value in the above equation, we get,
$\Rightarrow area\left( \Delta AED \right)=\dfrac{Dr}{2}\sqrt{1-{{\left( \dfrac{D}{2r} \right)}^{2}}}$
Thus, the area of the segment EFDE will be,
\[\begin{align}
& area(EFDE)=area(AEFD)-area(\Delta AED) \\
& \Rightarrow area(EFDE)={{r}^{2}}{{\cos }^{-1}}\left( \dfrac{D}{2r} \right)-\dfrac{Dr}{2}\sqrt{1-{{\left( \dfrac{D}{2r} \right)}^{2}}} \\
\end{align}\]
Thus, the total area of the shaded region will be,
$\begin{align}
& A=2\times area(EFDE) \\
& \Rightarrow A=2\times \left( {{r}^{2}}{{\cos }^{-1}}\left( \dfrac{D}{2r} \right)-\dfrac{Dr}{2}\sqrt{1-{{\left( \dfrac{D}{2r} \right)}^{2}}} \right)....\left( 3 \right) \\
\end{align}$
If we put the values of $r=4$ , $D=6$ in the equations $\left( 2 \right),\left( 3 \right)$ , we get,
$\begin{align}
& \Rightarrow P=4\left( 4 \right){{\cos }^{-1}}\left( \dfrac{6}{2\times 4} \right) \\
& \Rightarrow P=11.56 \\
\end{align}$ and $\begin{align}
& \Rightarrow A=2\times \left( {{\left( 4 \right)}^{2}}{{\cos }^{-1}}\left( \dfrac{6}{2\left( 4 \right)} \right)-\dfrac{6\times 4}{2}\sqrt{1-{{\left( \dfrac{6}{2\times 4} \right)}^{2}}} \right) \\
& \Rightarrow A=7.25 \\
\end{align}$
Therefore, we can conclude that the perimeter is $11.56$ and the area is \[7.25\] of the shaded region.
Note: This problem is pretty long and thus requiring tremendous patience. In such problems, we should at first figure out a way in which we can find out the required perimeter and area and then proceed accordingly. We must always take the value of the angles in radians otherwise; it will lead to wrong answers.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE