Two parallel chords of a circle of radius 2 are at a distance $(\sqrt {3} +1)$ apart. If the chords subtend at the center angles of $\dfrac{\pi}{k}, \dfrac{2\pi}{k}$, where $K > 0$, then the value of [k] is,
[Note: [k] denotes the largest integer less than or equal to k].
Complete step-by-step answer:
Consider the circle with center O hand radius 2 units as shown in the above figure.
Therefore, OA = OC = OB = OD = 2 units
$\Rightarrow \cos \dfrac{\pi}{k}=\dfrac{\text { base }}{\text { hypotenuse }}=\dfrac{O F}{O C}=\dfrac{\sqrt{3}+1-a}{2} \ldots \ldots \ldots \ldots$
Now add equation (1) and (2) we have, $\Rightarrow \cos \dfrac{\pi}{2 k}+\cos \dfrac{\pi}{k}=\dfrac{a}{2}+\dfrac{\sqrt{3}+1-a}{2}$
$\Rightarrow \cos \dfrac{\pi}{2 k}+\cos \dfrac{\pi}{k}=\dfrac{\sqrt{3}+1}{2}$
Now let, $\dfrac{\pi}{2 k}=\theta, \Rightarrow \dfrac{\pi}{k}=2 \theta$
We have,
$\Rightarrow \cos \theta+\cos 2$ $\theta=\dfrac{\sqrt{3}+1}{2}$
Now as we know that, $\cos 2 \theta=2 \cos ^{2} \theta-1$
$\Rightarrow \cos \theta+2 \cos ^{2} \theta-1=\dfrac{\sqrt{3}+1}{2}$
Let, $\cos \theta={t}$
$\Rightarrow t+2 t^{2}-1=\dfrac{\sqrt{3}+1}{2}$
$\Rightarrow 4 t^{2}+2 t-2=\sqrt{3}+1$
$\Rightarrow 4 t^{2}+2 t-\sqrt{3}-3=0$
Now apply quadratic formula we have, $\Rightarrow t=\dfrac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$, where, $a=4, b=2, c=(-3-\sqrt{3})$
$\Rightarrow t=\dfrac{-2 \pm \sqrt{2^{2}-4(4)(-3-\sqrt{3})}}{2(4)}$
$\Rightarrow t=\dfrac{-2 \pm \sqrt{4-16(-3-\sqrt{3})}}{8}$
$\Rightarrow t=\dfrac{-2 \pm \sqrt{52+16 \sqrt{3}}}{8}=\dfrac{-2 \pm 2 \sqrt{13+4 \sqrt{3}}}{8}=\dfrac{-1 \pm \sqrt{13+4 \sqrt{3}}}{4}=\dfrac{-1 \pm \sqrt{(2 \sqrt{3}+1)^{2}}}{4}$
$\Rightarrow t=\dfrac{-1+(2 \sqrt{3}+1)}{4}, \dfrac{-1-(2 \sqrt{3}+1)}{4}$
$\Rightarrow t=\dfrac{\sqrt{3}}{2}, \dfrac{-1-\sqrt{3}}{2}$
$\Rightarrow \cos \theta=\dfrac{\sqrt{3}}{2}, \dfrac{-1-\sqrt{3}}{2}$
As, $\dfrac{-1-\sqrt{3}}{2}=\dfrac{-1-1.732}{2}=\dfrac{-2.732}{2}=-1.366$
So, $\cos \theta=-1.366$ which is not possible as, $-1 \leq \cos \theta \leq 1$