Answer
Verified
480.9k+ views
Hint: Use the basic formula of Simple harmonic motion for a particle along an axis and use the same formula for the second particle. We don’t have to add phase angle to both the particles, since we only need to find the phase difference. Adding phase angle to either one is just enough as the phase difference will turn out to be that phase angle itself. Remember the trigonometric formulations for these kinds of questions as they play key roles in solving.
Complete step-by-step answer:
Let’s consider the 2 particles P and Q are executing SHM along the X axis. To further ease the problem we will consider only one of the particles to contain an additional phase angle while the other particle’s wave equation will not consider any phase angle.
SHM of P is $ {{x}_{1}}=a\sin \omega t $ and SHM of Q is $ {{x}_{2}}=a\sin (\omega t+\phi ) $ .
Here $ \omega =2\pi v $ .
The maximum distance between the 2 particles (d) is $ d=({ x }_{ 2 }-{ x }_{ 1 }) $ and $ d=\sqrt { 2 }a $ .
Therefore, \[\sqrt{2}a=[a\sin (\omega t+\phi )-asin(\omega t)]\]
$ \sqrt{2}a=a[\sin (\omega t+\phi )-sin(\omega t)] $
Using the formula of $ \sin { C } -\sin { D } =2[\cos { (\dfrac { C+D }{ 2 } ) } \sin { (\dfrac { C-D }{ 2 } ) } ] $ ,
$ \sqrt{2}=2[\cos (\dfrac{2\omega t+\phi }{2})\sin \dfrac{\phi }{2}] $
For maximum distance, we should have $ \cos (\dfrac{2\omega t+\phi }{2})=1 $ . This is necessary as “+1” is the maximum possible value of any cos angle.
Therefore, $ 1=\sqrt { 2 } [1\times \sin { \dfrac { \phi }{ 2 } } ] $
$ \dfrac { 1 }{ \sqrt { 2 } } =\sin { \dfrac { \phi }{ 2 } } $
$ \dfrac { 1 }{ \sqrt { 2 } } =\sin { \dfrac { (2n+1)\pi }{ 4 } } $ for n= any whole number.
We have been asked in the question to find the initial phase difference. Hence, we will take the smallest possible value of n. Therefore, n=0.
$ \sin { \dfrac { \pi }{ 4 } =\sin { \dfrac { \phi }{ 2 } } } $
$ \dfrac { \pi }{ 4 } =\dfrac { \phi }{ 2 } $
Therefore, $ \dfrac { \pi }{ 2 } =\phi $ .
Note: It’s important to remember here, that the SHM happens along the same direction.
Here, since we are trying to find the value of phase difference, we’ve considered the value of $ \cos (\dfrac{2\omega t+\phi }{2})=1 $ , as the numerator will always equate to $ \pi $ for maximum displacement between the particles condition.
Complete step-by-step answer:
Let’s consider the 2 particles P and Q are executing SHM along the X axis. To further ease the problem we will consider only one of the particles to contain an additional phase angle while the other particle’s wave equation will not consider any phase angle.
SHM of P is $ {{x}_{1}}=a\sin \omega t $ and SHM of Q is $ {{x}_{2}}=a\sin (\omega t+\phi ) $ .
Here $ \omega =2\pi v $ .
The maximum distance between the 2 particles (d) is $ d=({ x }_{ 2 }-{ x }_{ 1 }) $ and $ d=\sqrt { 2 }a $ .
Therefore, \[\sqrt{2}a=[a\sin (\omega t+\phi )-asin(\omega t)]\]
$ \sqrt{2}a=a[\sin (\omega t+\phi )-sin(\omega t)] $
Using the formula of $ \sin { C } -\sin { D } =2[\cos { (\dfrac { C+D }{ 2 } ) } \sin { (\dfrac { C-D }{ 2 } ) } ] $ ,
$ \sqrt{2}=2[\cos (\dfrac{2\omega t+\phi }{2})\sin \dfrac{\phi }{2}] $
For maximum distance, we should have $ \cos (\dfrac{2\omega t+\phi }{2})=1 $ . This is necessary as “+1” is the maximum possible value of any cos angle.
Therefore, $ 1=\sqrt { 2 } [1\times \sin { \dfrac { \phi }{ 2 } } ] $
$ \dfrac { 1 }{ \sqrt { 2 } } =\sin { \dfrac { \phi }{ 2 } } $
$ \dfrac { 1 }{ \sqrt { 2 } } =\sin { \dfrac { (2n+1)\pi }{ 4 } } $ for n= any whole number.
We have been asked in the question to find the initial phase difference. Hence, we will take the smallest possible value of n. Therefore, n=0.
$ \sin { \dfrac { \pi }{ 4 } =\sin { \dfrac { \phi }{ 2 } } } $
$ \dfrac { \pi }{ 4 } =\dfrac { \phi }{ 2 } $
Therefore, $ \dfrac { \pi }{ 2 } =\phi $ .
Note: It’s important to remember here, that the SHM happens along the same direction.
Here, since we are trying to find the value of phase difference, we’ve considered the value of $ \cos (\dfrac{2\omega t+\phi }{2})=1 $ , as the numerator will always equate to $ \pi $ for maximum displacement between the particles condition.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE