Answer
Verified
470.4k+ views
Hint: Use the basic formula of Simple harmonic motion for a particle along an axis and use the same formula for the second particle. We don’t have to add phase angle to both the particles, since we only need to find the phase difference. Adding phase angle to either one is just enough as the phase difference will turn out to be that phase angle itself. Remember the trigonometric formulations for these kinds of questions as they play key roles in solving.
Complete step-by-step answer:
Let’s consider the 2 particles P and Q are executing SHM along the X axis. To further ease the problem we will consider only one of the particles to contain an additional phase angle while the other particle’s wave equation will not consider any phase angle.
SHM of P is $ {{x}_{1}}=a\sin \omega t $ and SHM of Q is $ {{x}_{2}}=a\sin (\omega t+\phi ) $ .
Here $ \omega =2\pi v $ .
The maximum distance between the 2 particles (d) is $ d=({ x }_{ 2 }-{ x }_{ 1 }) $ and $ d=\sqrt { 2 }a $ .
Therefore, \[\sqrt{2}a=[a\sin (\omega t+\phi )-asin(\omega t)]\]
$ \sqrt{2}a=a[\sin (\omega t+\phi )-sin(\omega t)] $
Using the formula of $ \sin { C } -\sin { D } =2[\cos { (\dfrac { C+D }{ 2 } ) } \sin { (\dfrac { C-D }{ 2 } ) } ] $ ,
$ \sqrt{2}=2[\cos (\dfrac{2\omega t+\phi }{2})\sin \dfrac{\phi }{2}] $
For maximum distance, we should have $ \cos (\dfrac{2\omega t+\phi }{2})=1 $ . This is necessary as “+1” is the maximum possible value of any cos angle.
Therefore, $ 1=\sqrt { 2 } [1\times \sin { \dfrac { \phi }{ 2 } } ] $
$ \dfrac { 1 }{ \sqrt { 2 } } =\sin { \dfrac { \phi }{ 2 } } $
$ \dfrac { 1 }{ \sqrt { 2 } } =\sin { \dfrac { (2n+1)\pi }{ 4 } } $ for n= any whole number.
We have been asked in the question to find the initial phase difference. Hence, we will take the smallest possible value of n. Therefore, n=0.
$ \sin { \dfrac { \pi }{ 4 } =\sin { \dfrac { \phi }{ 2 } } } $
$ \dfrac { \pi }{ 4 } =\dfrac { \phi }{ 2 } $
Therefore, $ \dfrac { \pi }{ 2 } =\phi $ .
Note: It’s important to remember here, that the SHM happens along the same direction.
Here, since we are trying to find the value of phase difference, we’ve considered the value of $ \cos (\dfrac{2\omega t+\phi }{2})=1 $ , as the numerator will always equate to $ \pi $ for maximum displacement between the particles condition.
Complete step-by-step answer:
Let’s consider the 2 particles P and Q are executing SHM along the X axis. To further ease the problem we will consider only one of the particles to contain an additional phase angle while the other particle’s wave equation will not consider any phase angle.
SHM of P is $ {{x}_{1}}=a\sin \omega t $ and SHM of Q is $ {{x}_{2}}=a\sin (\omega t+\phi ) $ .
Here $ \omega =2\pi v $ .
The maximum distance between the 2 particles (d) is $ d=({ x }_{ 2 }-{ x }_{ 1 }) $ and $ d=\sqrt { 2 }a $ .
Therefore, \[\sqrt{2}a=[a\sin (\omega t+\phi )-asin(\omega t)]\]
$ \sqrt{2}a=a[\sin (\omega t+\phi )-sin(\omega t)] $
Using the formula of $ \sin { C } -\sin { D } =2[\cos { (\dfrac { C+D }{ 2 } ) } \sin { (\dfrac { C-D }{ 2 } ) } ] $ ,
$ \sqrt{2}=2[\cos (\dfrac{2\omega t+\phi }{2})\sin \dfrac{\phi }{2}] $
For maximum distance, we should have $ \cos (\dfrac{2\omega t+\phi }{2})=1 $ . This is necessary as “+1” is the maximum possible value of any cos angle.
Therefore, $ 1=\sqrt { 2 } [1\times \sin { \dfrac { \phi }{ 2 } } ] $
$ \dfrac { 1 }{ \sqrt { 2 } } =\sin { \dfrac { \phi }{ 2 } } $
$ \dfrac { 1 }{ \sqrt { 2 } } =\sin { \dfrac { (2n+1)\pi }{ 4 } } $ for n= any whole number.
We have been asked in the question to find the initial phase difference. Hence, we will take the smallest possible value of n. Therefore, n=0.
$ \sin { \dfrac { \pi }{ 4 } =\sin { \dfrac { \phi }{ 2 } } } $
$ \dfrac { \pi }{ 4 } =\dfrac { \phi }{ 2 } $
Therefore, $ \dfrac { \pi }{ 2 } =\phi $ .
Note: It’s important to remember here, that the SHM happens along the same direction.
Here, since we are trying to find the value of phase difference, we’ve considered the value of $ \cos (\dfrac{2\omega t+\phi }{2})=1 $ , as the numerator will always equate to $ \pi $ for maximum displacement between the particles condition.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE