Answer
Verified
457.2k+ views
Hint: The work done in stretching a spring is equal to the change in its potential energy. The force applied on the spring is proportional to the amount of stretch produced in the spring. Determine the relationship between the displacement for two springs when the force applied is the same in case (b).
Formula Used:
$W=\dfrac{1}{2}K{{x}^{2}}$
$F=Kx$
Complete answer:
When a force is applied on a spring with spring constant $K$, it changes the potential energy of the spring and the work done is determined as the change in potential energy of the spring. The work done can be mathematically written as,
$W=\dfrac{1}{2}K{{x}^{2}}$
Here, $W$ is the work done, $K$ is the spring constant and \[x\] is the amount of stretch.
Now, for case(a), it is mentioned that both the springs are stretched by the same amount. Thus, the work done for both the springs can be written as,
${{W}_{P}}=\dfrac{1}{2}{{K}_{P}}{{x}^{2}};{{W}_{Q}}=\dfrac{1}{2}{{K}_{Q}}{{x}^{2}}$
Now, the question mentions that ${{K}_{P}} > {{K}_{Q}}$. Thus, from the above equation, ${{W}_{P}} > {{W}_{Q}}$.
Now, let us consider case (b). In this case, both the springs are stretched by the same force. Now, the force applied on a spring can be written as,
$F=Kx$
Given,
$\begin{align}
& {{F}_{P}}={{F}_{Q}} \\
& {{K}_{P}}{{x}_{P}}={{K}_{Q}}{{x}_{Q}}
\end{align}$
From the above equation, ${{x}_{P}} < {{x}_{Q}}$ since ${{K}_{P}} > {{K}_{Q}}$.
The work done on both springs can be written as,
${{W}_{P}}=\dfrac{1}{2}\left( {{K}_{P}}{{x}_{P}} \right){{x}_{P}}$ and ${{W}_{Q}}=\dfrac{1}{2}\left( {{K}_{Q}}{{x}_{Q}} \right){{x}_{Q}}$.
Now,
$\begin{align}
& \dfrac{{{W}_{P}}}{{{W}_{Q}}}=\dfrac{\dfrac{1}{2}\left( {{K}_{P}}{{x}_{P}} \right){{x}_{P}}}{\dfrac{1}{2}\left( {{K}_{Q}}{{x}_{Q}} \right){{x}_{Q}}} \\
& =\dfrac{{{x}_{P}}}{{{x}_{Q}}}
\end{align}$
Since we calculated ${{x}_{P}} < {{x}_{Q}}$, ${{W}_{P}} < {{W}_{Q}}$.
Thus, the correct option is (A).
Note:
The work done on both springs is determined as change in potential energy. Take care of the relationship between the spring constant of two springs before deducing further relationships. Determine work done in terms of force applied so as to reach to a conclusion in part (b).
Formula Used:
$W=\dfrac{1}{2}K{{x}^{2}}$
$F=Kx$
Complete answer:
When a force is applied on a spring with spring constant $K$, it changes the potential energy of the spring and the work done is determined as the change in potential energy of the spring. The work done can be mathematically written as,
$W=\dfrac{1}{2}K{{x}^{2}}$
Here, $W$ is the work done, $K$ is the spring constant and \[x\] is the amount of stretch.
Now, for case(a), it is mentioned that both the springs are stretched by the same amount. Thus, the work done for both the springs can be written as,
${{W}_{P}}=\dfrac{1}{2}{{K}_{P}}{{x}^{2}};{{W}_{Q}}=\dfrac{1}{2}{{K}_{Q}}{{x}^{2}}$
Now, the question mentions that ${{K}_{P}} > {{K}_{Q}}$. Thus, from the above equation, ${{W}_{P}} > {{W}_{Q}}$.
Now, let us consider case (b). In this case, both the springs are stretched by the same force. Now, the force applied on a spring can be written as,
$F=Kx$
Given,
$\begin{align}
& {{F}_{P}}={{F}_{Q}} \\
& {{K}_{P}}{{x}_{P}}={{K}_{Q}}{{x}_{Q}}
\end{align}$
From the above equation, ${{x}_{P}} < {{x}_{Q}}$ since ${{K}_{P}} > {{K}_{Q}}$.
The work done on both springs can be written as,
${{W}_{P}}=\dfrac{1}{2}\left( {{K}_{P}}{{x}_{P}} \right){{x}_{P}}$ and ${{W}_{Q}}=\dfrac{1}{2}\left( {{K}_{Q}}{{x}_{Q}} \right){{x}_{Q}}$.
Now,
$\begin{align}
& \dfrac{{{W}_{P}}}{{{W}_{Q}}}=\dfrac{\dfrac{1}{2}\left( {{K}_{P}}{{x}_{P}} \right){{x}_{P}}}{\dfrac{1}{2}\left( {{K}_{Q}}{{x}_{Q}} \right){{x}_{Q}}} \\
& =\dfrac{{{x}_{P}}}{{{x}_{Q}}}
\end{align}$
Since we calculated ${{x}_{P}} < {{x}_{Q}}$, ${{W}_{P}} < {{W}_{Q}}$.
Thus, the correct option is (A).
Note:
The work done on both springs is determined as change in potential energy. Take care of the relationship between the spring constant of two springs before deducing further relationships. Determine work done in terms of force applied so as to reach to a conclusion in part (b).
Recently Updated Pages
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
The number of moles of KMnO4 that will be needed to class 11 chemistry JEE_Main
The oxidation process involves class 11 chemistry JEE_Main
A car starts from rest to cover a distance s The coefficient class 11 physics JEE_Main
The transalkenes are formed by the reduction of alkynes class 11 chemistry JEE_Main
At what temperature will the total KE of 03 mol of class 11 chemistry JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE