Answer
Verified
499.2k+ views
Hint: The general equation of tangent at \[\left( a{{t}^{2}},2at \right)\]is given by \[ty=x+a{{t}^{2}}\], where \[t\] is a parameter .
The point of intersection of tangents at \[A\left( at_{1}^{2},2a{{t}_{1}} \right)\]and \[B\left( at_{2}^{2},2a{{t}_{2}} \right)\] is given by \[\left( a{{t}_{1}}{{t}_{2}},a\left( {{t}_{1}}+{{t}_{2}} \right) \right)\], where \[{{t}_{1}}\] and \[{{t}_{2}}\] are parameters.
We will consider the equation of the parabola to be \[{{y}^{2}}=4ax\].
We will consider two points \[A\left( at_{1}^{2},2a{{t}_{1}} \right)\] and \[B\left( at_{2}^{2},2a{{t}_{2}} \right)\] on the parabola , where \[{{t}_{1}}\] and \[{{t}_{2}}\] are parameters.
Now , we will find the equation of tangents at these points.
Now, we know the general equation of tangent at \[\left( a{{t}^{2}},2at \right)\] is given by \[ty=x+a{{t}^{2}}\], where \[t\] is a parameter .
So , the equation of tangent at \[A\left( at_{1}^{2},2a{{t}_{1}} \right)\] is given by substituting \[{{t}_{1}}\] in place of \[t\] in the general equation of tangent .
On substituting \[{{t}_{1}}\] in place of \[t\] in the general equation of tangent , we get
\[{{t}_{1}}y=x+at_{1}^{2}.....\left( i \right)\]
And equation of tangent at \[B\left( at_{2}^{2},2a{{t}_{2}} \right)\] is given as
\[{{t}_{2}}y=x+at_{2}^{2}....\left( ii \right)\]
Now, we need to find the locus of the point of intersection of \[\left( i \right)\]and \[\left( ii \right)\].
Let the point of intersection be \[M\left( h,k \right)\].
Now, from equation\[\left( i \right)\], we have
\[y{{t}_{1}}=x+at_{1}^{2}\]
\[\Rightarrow x={{t}_{1}}\left( y-a{{t}_{1}} \right).....\left( iii \right)\]
We will substitute the value of \[x\] from equation \[(iii)\] in equation \[\left( ii \right)\].
On substituting value of \[x\] from equation\[(iii)\] in equation \[\left( ii \right)\], we get,
\[y{{t}_{2}}={{t}_{1}}y-at_{1}^{2}+at_{2}^{2}\]
\[\Rightarrow y\left( {{t}_{2}}-{{t}_{1}} \right)=a\left( t_{2}^{2}-t_{1}^{2} \right)\]
\[\Rightarrow y=a\left( {{t}_{1}}+{{t}_{2}} \right)\]
Substituting \[y=a\left( {{t}_{1}}+{{t}_{2}} \right)\]in \[\left( iii \right)\], we get
\[x={{t}_{1}}\left( a{{t}_{1}}+a{{t}_{2}}-a{{t}_{1}} \right)\]
\[\Rightarrow x=a\left( {{t}_{1}}{{t}_{2}} \right)\]
So, the point of intersection of tangents \[\left( i \right)\] and \[\left( ii \right)\] is \[\left( a{{t}_{1}}{{t}_{2}},a\left( {{t}_{1}}+{{t}_{2}} \right) \right)\].
Comparing it with\[M\left( h,k \right)\], we get
\[h=a{{t}_{1}}{{t}_{2}}\]
\[\Rightarrow \dfrac{h}{a}={{t}_{1}}{{t}_{2}}.....\left( iv \right)\]
And \[k=a\left( {{t}_{1}}+{{t}_{2}} \right)\]
\[\Rightarrow \dfrac{k}{a}={{t}_{1}}+{{t}_{2}}.....\left( v \right)\]
Now, we will consider the point of contact of the fixed tangent be \[C\left( a{{t}^{2}},2at \right)\].
So , the point of intersection of tangent at \[A\] and tangent at \[C\] is \[D\left( at{{t}_{1}},a\left( t+{{t}_{1}} \right) \right)\].
And the point of intersection of tangent at \[B\] and tangent at \[C\] is \[E\left( at{{t}_{2}},a\left( t+{{t}_{2}} \right) \right)\].
Now, in the question it is given that the product of intercept on the fixed tangent is constant.
So, \[CD\times CE=C\]
\[\Rightarrow \sqrt{{{\left( a{{t}^{2}}-at{{t}_{1}} \right)}^{2}}+{{\left( 2at-a{{t}_{1}}-at \right)}^{2}}}\times \sqrt{{{\left( a{{t}^{2}}-at{{t}_{2}} \right)}^{2}}+{{\left( 2at-a{{t}_{2}}-at \right)}^{2}}}=C\]
\[\Rightarrow \sqrt{{{a}^{2}}{{t}^{2}}{{\left( t-{{t}_{1}} \right)}^{2}}+{{a}^{2}}{{\left( t-{{t}_{1}} \right)}^{2}}}\times \sqrt{{{a}^{2}}{{t}^{2}}{{\left( t-{{t}_{2}} \right)}^{2}}+{{a}^{2}}{{\left( t-{{t}_{2}} \right)}^{2}}}=C\]
\[\Rightarrow a\left( t-{{t}_{1}} \right)\sqrt{{{t}^{2}}+1}\times a\left( t-{{t}_{2}} \right)\sqrt{{{t}^{2}}+1}=C\]
\[\Rightarrow \left( t-{{t}_{1}} \right)\left( t-{{t}_{2}} \right)=\dfrac{C}{{{a}^{2}}\left( {{t}^{2}}+1 \right)}\]
\[\Rightarrow \left( t-{{t}_{1}} \right)\left( t-{{t}_{2}} \right)={{C}_{1}}\] (say)
\[\Rightarrow {{t}^{2}}-\left( {{t}_{1}}+{{t}_{2}} \right)+{{t}_{1}}{{t}_{2}}={{C}_{1}}....\left( vi \right)\]
Substituting \[\left( iv \right)\]and \[\left( v \right)\]in \[\left( vi \right)\], we get
\[{{t}^{2}}-\dfrac{k}{a}+\dfrac{h}{a}={{C}_{1}}\]
\[\Rightarrow h-k=a\left( {{C}_{1}}-{{t}^{2}} \right).......(vii)\]
Now, to find the locus of \[M\left( h,k \right)\], we will substitute \[(x,y)\] in place of \[(h,k)\] in equation\[(vii)\].
So , the locus of \[M\left( h,k \right)\] is given as
\[x-y=a\left( {{C}_{1}}-{{t}^{2}} \right)\] which represents a straight line.
Note: : While simplifying the equations , please make sure that sign mistakes do not occur. These mistakes are very common and can cause confusions while solving. Ultimately the answer becomes wrong. So, sign conventions should be carefully taken .
The point of intersection of tangents at \[A\left( at_{1}^{2},2a{{t}_{1}} \right)\]and \[B\left( at_{2}^{2},2a{{t}_{2}} \right)\] is given by \[\left( a{{t}_{1}}{{t}_{2}},a\left( {{t}_{1}}+{{t}_{2}} \right) \right)\], where \[{{t}_{1}}\] and \[{{t}_{2}}\] are parameters.
We will consider the equation of the parabola to be \[{{y}^{2}}=4ax\].
We will consider two points \[A\left( at_{1}^{2},2a{{t}_{1}} \right)\] and \[B\left( at_{2}^{2},2a{{t}_{2}} \right)\] on the parabola , where \[{{t}_{1}}\] and \[{{t}_{2}}\] are parameters.
Now , we will find the equation of tangents at these points.
Now, we know the general equation of tangent at \[\left( a{{t}^{2}},2at \right)\] is given by \[ty=x+a{{t}^{2}}\], where \[t\] is a parameter .
So , the equation of tangent at \[A\left( at_{1}^{2},2a{{t}_{1}} \right)\] is given by substituting \[{{t}_{1}}\] in place of \[t\] in the general equation of tangent .
On substituting \[{{t}_{1}}\] in place of \[t\] in the general equation of tangent , we get
\[{{t}_{1}}y=x+at_{1}^{2}.....\left( i \right)\]
And equation of tangent at \[B\left( at_{2}^{2},2a{{t}_{2}} \right)\] is given as
\[{{t}_{2}}y=x+at_{2}^{2}....\left( ii \right)\]
Now, we need to find the locus of the point of intersection of \[\left( i \right)\]and \[\left( ii \right)\].
Let the point of intersection be \[M\left( h,k \right)\].
Now, from equation\[\left( i \right)\], we have
\[y{{t}_{1}}=x+at_{1}^{2}\]
\[\Rightarrow x={{t}_{1}}\left( y-a{{t}_{1}} \right).....\left( iii \right)\]
We will substitute the value of \[x\] from equation \[(iii)\] in equation \[\left( ii \right)\].
On substituting value of \[x\] from equation\[(iii)\] in equation \[\left( ii \right)\], we get,
\[y{{t}_{2}}={{t}_{1}}y-at_{1}^{2}+at_{2}^{2}\]
\[\Rightarrow y\left( {{t}_{2}}-{{t}_{1}} \right)=a\left( t_{2}^{2}-t_{1}^{2} \right)\]
\[\Rightarrow y=a\left( {{t}_{1}}+{{t}_{2}} \right)\]
Substituting \[y=a\left( {{t}_{1}}+{{t}_{2}} \right)\]in \[\left( iii \right)\], we get
\[x={{t}_{1}}\left( a{{t}_{1}}+a{{t}_{2}}-a{{t}_{1}} \right)\]
\[\Rightarrow x=a\left( {{t}_{1}}{{t}_{2}} \right)\]
So, the point of intersection of tangents \[\left( i \right)\] and \[\left( ii \right)\] is \[\left( a{{t}_{1}}{{t}_{2}},a\left( {{t}_{1}}+{{t}_{2}} \right) \right)\].
Comparing it with\[M\left( h,k \right)\], we get
\[h=a{{t}_{1}}{{t}_{2}}\]
\[\Rightarrow \dfrac{h}{a}={{t}_{1}}{{t}_{2}}.....\left( iv \right)\]
And \[k=a\left( {{t}_{1}}+{{t}_{2}} \right)\]
\[\Rightarrow \dfrac{k}{a}={{t}_{1}}+{{t}_{2}}.....\left( v \right)\]
Now, we will consider the point of contact of the fixed tangent be \[C\left( a{{t}^{2}},2at \right)\].
So , the point of intersection of tangent at \[A\] and tangent at \[C\] is \[D\left( at{{t}_{1}},a\left( t+{{t}_{1}} \right) \right)\].
And the point of intersection of tangent at \[B\] and tangent at \[C\] is \[E\left( at{{t}_{2}},a\left( t+{{t}_{2}} \right) \right)\].
Now, in the question it is given that the product of intercept on the fixed tangent is constant.
So, \[CD\times CE=C\]
\[\Rightarrow \sqrt{{{\left( a{{t}^{2}}-at{{t}_{1}} \right)}^{2}}+{{\left( 2at-a{{t}_{1}}-at \right)}^{2}}}\times \sqrt{{{\left( a{{t}^{2}}-at{{t}_{2}} \right)}^{2}}+{{\left( 2at-a{{t}_{2}}-at \right)}^{2}}}=C\]
\[\Rightarrow \sqrt{{{a}^{2}}{{t}^{2}}{{\left( t-{{t}_{1}} \right)}^{2}}+{{a}^{2}}{{\left( t-{{t}_{1}} \right)}^{2}}}\times \sqrt{{{a}^{2}}{{t}^{2}}{{\left( t-{{t}_{2}} \right)}^{2}}+{{a}^{2}}{{\left( t-{{t}_{2}} \right)}^{2}}}=C\]
\[\Rightarrow a\left( t-{{t}_{1}} \right)\sqrt{{{t}^{2}}+1}\times a\left( t-{{t}_{2}} \right)\sqrt{{{t}^{2}}+1}=C\]
\[\Rightarrow \left( t-{{t}_{1}} \right)\left( t-{{t}_{2}} \right)=\dfrac{C}{{{a}^{2}}\left( {{t}^{2}}+1 \right)}\]
\[\Rightarrow \left( t-{{t}_{1}} \right)\left( t-{{t}_{2}} \right)={{C}_{1}}\] (say)
\[\Rightarrow {{t}^{2}}-\left( {{t}_{1}}+{{t}_{2}} \right)+{{t}_{1}}{{t}_{2}}={{C}_{1}}....\left( vi \right)\]
Substituting \[\left( iv \right)\]and \[\left( v \right)\]in \[\left( vi \right)\], we get
\[{{t}^{2}}-\dfrac{k}{a}+\dfrac{h}{a}={{C}_{1}}\]
\[\Rightarrow h-k=a\left( {{C}_{1}}-{{t}^{2}} \right).......(vii)\]
Now, to find the locus of \[M\left( h,k \right)\], we will substitute \[(x,y)\] in place of \[(h,k)\] in equation\[(vii)\].
So , the locus of \[M\left( h,k \right)\] is given as
\[x-y=a\left( {{C}_{1}}-{{t}^{2}} \right)\] which represents a straight line.
Note: : While simplifying the equations , please make sure that sign mistakes do not occur. These mistakes are very common and can cause confusions while solving. Ultimately the answer becomes wrong. So, sign conventions should be carefully taken .
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE