Answer
Verified
489.9k+ views
Hint: The general equation of tangent at \[\left( a{{t}^{2}},2at \right)\]is given by \[ty=x+a{{t}^{2}}\], where \[t\] is a parameter .
The point of intersection of tangents at \[A\left( at_{1}^{2},2a{{t}_{1}} \right)\]and \[B\left( at_{2}^{2},2a{{t}_{2}} \right)\] is given by \[\left( a{{t}_{1}}{{t}_{2}},a\left( {{t}_{1}}+{{t}_{2}} \right) \right)\], where \[{{t}_{1}}\] and \[{{t}_{2}}\] are parameters.
We will consider the equation of the parabola to be \[{{y}^{2}}=4ax\].
We will consider two points \[A\left( at_{1}^{2},2a{{t}_{1}} \right)\] and \[B\left( at_{2}^{2},2a{{t}_{2}} \right)\] on the parabola , where \[{{t}_{1}}\] and \[{{t}_{2}}\] are parameters.
Now , we will find the equation of tangents at these points.
Now, we know the general equation of tangent at \[\left( a{{t}^{2}},2at \right)\] is given by \[ty=x+a{{t}^{2}}\], where \[t\] is a parameter .
So , the equation of tangent at \[A\left( at_{1}^{2},2a{{t}_{1}} \right)\] is given by substituting \[{{t}_{1}}\] in place of \[t\] in the general equation of tangent .
On substituting \[{{t}_{1}}\] in place of \[t\] in the general equation of tangent , we get
\[{{t}_{1}}y=x+at_{1}^{2}.....\left( i \right)\]
And equation of tangent at \[B\left( at_{2}^{2},2a{{t}_{2}} \right)\] is given as
\[{{t}_{2}}y=x+at_{2}^{2}....\left( ii \right)\]
Now, we need to find the locus of the point of intersection of \[\left( i \right)\]and \[\left( ii \right)\].
Let the point of intersection be \[M\left( h,k \right)\].
Now, from equation\[\left( i \right)\], we have
\[y{{t}_{1}}=x+at_{1}^{2}\]
\[\Rightarrow x={{t}_{1}}\left( y-a{{t}_{1}} \right).....\left( iii \right)\]
We will substitute the value of \[x\] from equation \[(iii)\] in equation \[\left( ii \right)\].
On substituting value of \[x\] from equation\[(iii)\] in equation \[\left( ii \right)\], we get,
\[y{{t}_{2}}={{t}_{1}}y-at_{1}^{2}+at_{2}^{2}\]
\[\Rightarrow y\left( {{t}_{2}}-{{t}_{1}} \right)=a\left( t_{2}^{2}-t_{1}^{2} \right)\]
\[\Rightarrow y=a\left( {{t}_{1}}+{{t}_{2}} \right)\]
Substituting \[y=a\left( {{t}_{1}}+{{t}_{2}} \right)\]in \[\left( iii \right)\], we get
\[x={{t}_{1}}\left( a{{t}_{1}}+a{{t}_{2}}-a{{t}_{1}} \right)\]
\[\Rightarrow x=a\left( {{t}_{1}}{{t}_{2}} \right)\]
So, the point of intersection of tangents \[\left( i \right)\] and \[\left( ii \right)\] is \[\left( a{{t}_{1}}{{t}_{2}},a\left( {{t}_{1}}+{{t}_{2}} \right) \right)\].
Comparing it with\[M\left( h,k \right)\], we get
\[h=a{{t}_{1}}{{t}_{2}}\]
\[\Rightarrow \dfrac{h}{a}={{t}_{1}}{{t}_{2}}.....\left( iv \right)\]
And \[k=a\left( {{t}_{1}}+{{t}_{2}} \right)\]
\[\Rightarrow \dfrac{k}{a}={{t}_{1}}+{{t}_{2}}.....\left( v \right)\]
Now, we will consider the point of contact of the fixed tangent be \[C\left( a{{t}^{2}},2at \right)\].
So , the point of intersection of tangent at \[A\] and tangent at \[C\] is \[D\left( at{{t}_{1}},a\left( t+{{t}_{1}} \right) \right)\].
And the point of intersection of tangent at \[B\] and tangent at \[C\] is \[E\left( at{{t}_{2}},a\left( t+{{t}_{2}} \right) \right)\].
Now, in the question it is given that the product of intercept on the fixed tangent is constant.
So, \[CD\times CE=C\]
\[\Rightarrow \sqrt{{{\left( a{{t}^{2}}-at{{t}_{1}} \right)}^{2}}+{{\left( 2at-a{{t}_{1}}-at \right)}^{2}}}\times \sqrt{{{\left( a{{t}^{2}}-at{{t}_{2}} \right)}^{2}}+{{\left( 2at-a{{t}_{2}}-at \right)}^{2}}}=C\]
\[\Rightarrow \sqrt{{{a}^{2}}{{t}^{2}}{{\left( t-{{t}_{1}} \right)}^{2}}+{{a}^{2}}{{\left( t-{{t}_{1}} \right)}^{2}}}\times \sqrt{{{a}^{2}}{{t}^{2}}{{\left( t-{{t}_{2}} \right)}^{2}}+{{a}^{2}}{{\left( t-{{t}_{2}} \right)}^{2}}}=C\]
\[\Rightarrow a\left( t-{{t}_{1}} \right)\sqrt{{{t}^{2}}+1}\times a\left( t-{{t}_{2}} \right)\sqrt{{{t}^{2}}+1}=C\]
\[\Rightarrow \left( t-{{t}_{1}} \right)\left( t-{{t}_{2}} \right)=\dfrac{C}{{{a}^{2}}\left( {{t}^{2}}+1 \right)}\]
\[\Rightarrow \left( t-{{t}_{1}} \right)\left( t-{{t}_{2}} \right)={{C}_{1}}\] (say)
\[\Rightarrow {{t}^{2}}-\left( {{t}_{1}}+{{t}_{2}} \right)+{{t}_{1}}{{t}_{2}}={{C}_{1}}....\left( vi \right)\]
Substituting \[\left( iv \right)\]and \[\left( v \right)\]in \[\left( vi \right)\], we get
\[{{t}^{2}}-\dfrac{k}{a}+\dfrac{h}{a}={{C}_{1}}\]
\[\Rightarrow h-k=a\left( {{C}_{1}}-{{t}^{2}} \right).......(vii)\]
Now, to find the locus of \[M\left( h,k \right)\], we will substitute \[(x,y)\] in place of \[(h,k)\] in equation\[(vii)\].
So , the locus of \[M\left( h,k \right)\] is given as
\[x-y=a\left( {{C}_{1}}-{{t}^{2}} \right)\] which represents a straight line.
Note: : While simplifying the equations , please make sure that sign mistakes do not occur. These mistakes are very common and can cause confusions while solving. Ultimately the answer becomes wrong. So, sign conventions should be carefully taken .
The point of intersection of tangents at \[A\left( at_{1}^{2},2a{{t}_{1}} \right)\]and \[B\left( at_{2}^{2},2a{{t}_{2}} \right)\] is given by \[\left( a{{t}_{1}}{{t}_{2}},a\left( {{t}_{1}}+{{t}_{2}} \right) \right)\], where \[{{t}_{1}}\] and \[{{t}_{2}}\] are parameters.
We will consider the equation of the parabola to be \[{{y}^{2}}=4ax\].
We will consider two points \[A\left( at_{1}^{2},2a{{t}_{1}} \right)\] and \[B\left( at_{2}^{2},2a{{t}_{2}} \right)\] on the parabola , where \[{{t}_{1}}\] and \[{{t}_{2}}\] are parameters.
Now , we will find the equation of tangents at these points.
Now, we know the general equation of tangent at \[\left( a{{t}^{2}},2at \right)\] is given by \[ty=x+a{{t}^{2}}\], where \[t\] is a parameter .
So , the equation of tangent at \[A\left( at_{1}^{2},2a{{t}_{1}} \right)\] is given by substituting \[{{t}_{1}}\] in place of \[t\] in the general equation of tangent .
On substituting \[{{t}_{1}}\] in place of \[t\] in the general equation of tangent , we get
\[{{t}_{1}}y=x+at_{1}^{2}.....\left( i \right)\]
And equation of tangent at \[B\left( at_{2}^{2},2a{{t}_{2}} \right)\] is given as
\[{{t}_{2}}y=x+at_{2}^{2}....\left( ii \right)\]
Now, we need to find the locus of the point of intersection of \[\left( i \right)\]and \[\left( ii \right)\].
Let the point of intersection be \[M\left( h,k \right)\].
Now, from equation\[\left( i \right)\], we have
\[y{{t}_{1}}=x+at_{1}^{2}\]
\[\Rightarrow x={{t}_{1}}\left( y-a{{t}_{1}} \right).....\left( iii \right)\]
We will substitute the value of \[x\] from equation \[(iii)\] in equation \[\left( ii \right)\].
On substituting value of \[x\] from equation\[(iii)\] in equation \[\left( ii \right)\], we get,
\[y{{t}_{2}}={{t}_{1}}y-at_{1}^{2}+at_{2}^{2}\]
\[\Rightarrow y\left( {{t}_{2}}-{{t}_{1}} \right)=a\left( t_{2}^{2}-t_{1}^{2} \right)\]
\[\Rightarrow y=a\left( {{t}_{1}}+{{t}_{2}} \right)\]
Substituting \[y=a\left( {{t}_{1}}+{{t}_{2}} \right)\]in \[\left( iii \right)\], we get
\[x={{t}_{1}}\left( a{{t}_{1}}+a{{t}_{2}}-a{{t}_{1}} \right)\]
\[\Rightarrow x=a\left( {{t}_{1}}{{t}_{2}} \right)\]
So, the point of intersection of tangents \[\left( i \right)\] and \[\left( ii \right)\] is \[\left( a{{t}_{1}}{{t}_{2}},a\left( {{t}_{1}}+{{t}_{2}} \right) \right)\].
Comparing it with\[M\left( h,k \right)\], we get
\[h=a{{t}_{1}}{{t}_{2}}\]
\[\Rightarrow \dfrac{h}{a}={{t}_{1}}{{t}_{2}}.....\left( iv \right)\]
And \[k=a\left( {{t}_{1}}+{{t}_{2}} \right)\]
\[\Rightarrow \dfrac{k}{a}={{t}_{1}}+{{t}_{2}}.....\left( v \right)\]
Now, we will consider the point of contact of the fixed tangent be \[C\left( a{{t}^{2}},2at \right)\].
So , the point of intersection of tangent at \[A\] and tangent at \[C\] is \[D\left( at{{t}_{1}},a\left( t+{{t}_{1}} \right) \right)\].
And the point of intersection of tangent at \[B\] and tangent at \[C\] is \[E\left( at{{t}_{2}},a\left( t+{{t}_{2}} \right) \right)\].
Now, in the question it is given that the product of intercept on the fixed tangent is constant.
So, \[CD\times CE=C\]
\[\Rightarrow \sqrt{{{\left( a{{t}^{2}}-at{{t}_{1}} \right)}^{2}}+{{\left( 2at-a{{t}_{1}}-at \right)}^{2}}}\times \sqrt{{{\left( a{{t}^{2}}-at{{t}_{2}} \right)}^{2}}+{{\left( 2at-a{{t}_{2}}-at \right)}^{2}}}=C\]
\[\Rightarrow \sqrt{{{a}^{2}}{{t}^{2}}{{\left( t-{{t}_{1}} \right)}^{2}}+{{a}^{2}}{{\left( t-{{t}_{1}} \right)}^{2}}}\times \sqrt{{{a}^{2}}{{t}^{2}}{{\left( t-{{t}_{2}} \right)}^{2}}+{{a}^{2}}{{\left( t-{{t}_{2}} \right)}^{2}}}=C\]
\[\Rightarrow a\left( t-{{t}_{1}} \right)\sqrt{{{t}^{2}}+1}\times a\left( t-{{t}_{2}} \right)\sqrt{{{t}^{2}}+1}=C\]
\[\Rightarrow \left( t-{{t}_{1}} \right)\left( t-{{t}_{2}} \right)=\dfrac{C}{{{a}^{2}}\left( {{t}^{2}}+1 \right)}\]
\[\Rightarrow \left( t-{{t}_{1}} \right)\left( t-{{t}_{2}} \right)={{C}_{1}}\] (say)
\[\Rightarrow {{t}^{2}}-\left( {{t}_{1}}+{{t}_{2}} \right)+{{t}_{1}}{{t}_{2}}={{C}_{1}}....\left( vi \right)\]
Substituting \[\left( iv \right)\]and \[\left( v \right)\]in \[\left( vi \right)\], we get
\[{{t}^{2}}-\dfrac{k}{a}+\dfrac{h}{a}={{C}_{1}}\]
\[\Rightarrow h-k=a\left( {{C}_{1}}-{{t}^{2}} \right).......(vii)\]
Now, to find the locus of \[M\left( h,k \right)\], we will substitute \[(x,y)\] in place of \[(h,k)\] in equation\[(vii)\].
So , the locus of \[M\left( h,k \right)\] is given as
\[x-y=a\left( {{C}_{1}}-{{t}^{2}} \right)\] which represents a straight line.
Note: : While simplifying the equations , please make sure that sign mistakes do not occur. These mistakes are very common and can cause confusions while solving. Ultimately the answer becomes wrong. So, sign conventions should be carefully taken .
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE