Answer
Verified
455.4k+ views
Hint: Let two thin lenses ${{L}_{1}}\text{ and }{{L}_{2}}$ of focal lengths ${{f}_{1}}\text{ and }{{f}_{2}}$ be placed in contact so as to have a common principal axis. It is required to find the effective focal length of this combination. Let O be a point object on the principal axis.
Complete step by step answer:
In the above figure two lenses are kept in contact and image is traced. We will solve accordingly to find the new focal length obtained by the two.
We know that the refraction through the two lenses are considered separately and the results are combined. While dealing with the individual lenses, the distances are to be measured from the respective optic centres. Since the lenses are thin, these distances can also be measured from the centre of the lens system (point of contact in the case of two lenses).
Let u be the distance of O from the centre of the lens system. Assuming that the lens ${{L}_{1}}$alone produces the refraction.
Let the image be formed at I at a distance v.
Writing the lens equation in this case. We get
$\Rightarrow \dfrac{1}{u}+\dfrac{1}{v'}=\dfrac{1}{{{f}_{1}}}$
The image I’ due to the first lens acts on the virtual object for the second lens. Let the final image be formed at I, at a distance v from the centre of the lens system. Writing the lens equation in this case, we get
\[\Rightarrow \dfrac{1}{-v'}+\dfrac{1}{v}=\dfrac{1}{{{f}_{2}}}\]
Adding equations in both the cases we get
\[\begin{align}
& \dfrac{1}{u}+\dfrac{1}{v'}-\dfrac{1}{v'}+\dfrac{1}{v}=\dfrac{1}{{{f}_{1}}}+\dfrac{1}{{{f}_{2}}} \\
& \dfrac{1}{u}+\dfrac{1}{v}=\dfrac{1}{{{f}_{1}}}+\dfrac{1}{{{f}_{2}}}.............1 \\
\end{align}\]
Let the two lenses be replaced by a single lens which can produce the same effect as the two lenses put together produce, i.e., for an object O placed at a distance u from it, the image I must be formed at a distance v. such a lens is called an equivalent lens and its focal length is called the equivalent focal length.
Writing the lens equation in this case, we get
\[\Rightarrow \dfrac{1}{u}-\dfrac{1}{v}=\dfrac{1}{f}............2\]
Comparing equations (1) and (2) we get
$\Rightarrow \dfrac{1}{F}=\dfrac{1}{{{f}_{1}}}+\dfrac{1}{{{f}_{2}}}$
The below given figure shows that combination of two lenses will behave as a single lens having focal length equal to the sum of the reciprocals of the individual focal lengths.
Hence, when thin lenses are combined, the reciprocal of the effective focal length will be equal to the sum of the reciprocals of the individual focal lengths.
Note:
We use a combination of lenses to increase the sharpness of the final image by minimising certain defects or aberrations in it. Minimising certain defects or aberrations in it. To erect the final image. We also use it to increase the field of view.
Complete step by step answer:
In the above figure two lenses are kept in contact and image is traced. We will solve accordingly to find the new focal length obtained by the two.
We know that the refraction through the two lenses are considered separately and the results are combined. While dealing with the individual lenses, the distances are to be measured from the respective optic centres. Since the lenses are thin, these distances can also be measured from the centre of the lens system (point of contact in the case of two lenses).
Let u be the distance of O from the centre of the lens system. Assuming that the lens ${{L}_{1}}$alone produces the refraction.
Let the image be formed at I at a distance v.
Writing the lens equation in this case. We get
$\Rightarrow \dfrac{1}{u}+\dfrac{1}{v'}=\dfrac{1}{{{f}_{1}}}$
The image I’ due to the first lens acts on the virtual object for the second lens. Let the final image be formed at I, at a distance v from the centre of the lens system. Writing the lens equation in this case, we get
\[\Rightarrow \dfrac{1}{-v'}+\dfrac{1}{v}=\dfrac{1}{{{f}_{2}}}\]
Adding equations in both the cases we get
\[\begin{align}
& \dfrac{1}{u}+\dfrac{1}{v'}-\dfrac{1}{v'}+\dfrac{1}{v}=\dfrac{1}{{{f}_{1}}}+\dfrac{1}{{{f}_{2}}} \\
& \dfrac{1}{u}+\dfrac{1}{v}=\dfrac{1}{{{f}_{1}}}+\dfrac{1}{{{f}_{2}}}.............1 \\
\end{align}\]
Let the two lenses be replaced by a single lens which can produce the same effect as the two lenses put together produce, i.e., for an object O placed at a distance u from it, the image I must be formed at a distance v. such a lens is called an equivalent lens and its focal length is called the equivalent focal length.
Writing the lens equation in this case, we get
\[\Rightarrow \dfrac{1}{u}-\dfrac{1}{v}=\dfrac{1}{f}............2\]
Comparing equations (1) and (2) we get
$\Rightarrow \dfrac{1}{F}=\dfrac{1}{{{f}_{1}}}+\dfrac{1}{{{f}_{2}}}$
The below given figure shows that combination of two lenses will behave as a single lens having focal length equal to the sum of the reciprocals of the individual focal lengths.
Hence, when thin lenses are combined, the reciprocal of the effective focal length will be equal to the sum of the reciprocals of the individual focal lengths.
Note:
We use a combination of lenses to increase the sharpness of the final image by minimising certain defects or aberrations in it. Minimising certain defects or aberrations in it. To erect the final image. We also use it to increase the field of view.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths