Answer
Verified
459k+ views
Hint:
- We can solve this problem by using the concept of beats of tuning forks. We should know about wave- interference.
- We know that a tuning fork is a two pronged metal device that vibrates when struck.
- When the waves of sound are in the same phase they lead to constructive interference and when they are 180 degrees out of phase, they lead to destructive interference.
- A beat is an interference pattern of sounds of different frequencies.
Complete step by step solution:
In the same medium when two waves of sounds meet while travelling on intersecting or coincident paths, a net effect of combination of two or more waves will arise. It is termed as interference.
Let us consider the frequency of two tuning forks $\mathop n\nolimits_1 $ and$\mathop n\nolimits_2 $. Here the beat between the sound waves emitted from the tuning fork is $6$.
Therefore,$\mathop n\nolimits_1 - \mathop n\nolimits_2 = 6$ (i)
[As beat is equal to the difference of frequencies of two tuning forks here]
Now, the first fork has the frequency of $3\% $ higher than a standard one.
Let us assume, the frequency of standard one is equal to $n$.
Therefore, $\mathop n\nolimits_1 = (n + n \times \dfrac{3}{{100}}) = n \times (1 + \dfrac{3}{{100}}) = \dfrac{{103}}{{100}}n$
Similarly, for the second fork, it has the frequency $2\% $ less than the standard fork.
Therefore, $\mathop n\nolimits_2 = (n - n \times \dfrac{2}{{100}}) = n \times (1 - \dfrac{2}{{100}}) = \dfrac{{98}}{{100}}n$
Now, putting the values of $\mathop n\nolimits_1 $ and$\mathop n\nolimits_2 $ in the equation (i)
Therefore,
$\mathop n\nolimits_1 - \mathop n\nolimits_2 = 6$
$ \Rightarrow $ $\dfrac{{103n}}{{100}} - \dfrac{{98n}}{{100}} = 6$
$ \Rightarrow $ $\dfrac{{5n}}{{100}} = 6$
$ \Rightarrow $ $n = \dfrac{{100 \times 6}}{5} = 120$
Therefore, $n = 120Hz$.
Now, the frequency of first tuning fork $ \Rightarrow \mathop n\nolimits_1 = \dfrac{{103n}}{{100}} = \dfrac{{103 \times 120}}{{100}} = 123.6$
And the frequency of the second tuning fork $ \Rightarrow \mathop n\nolimits_2 = \dfrac{{98n}}{{100}} = \dfrac{{98 \times 120}}{{100}} = 117.6$
Therefore $\mathop n\nolimits_1 = 123.6Hz$ and $\mathop n\nolimits_2 = 117.6Hz$.
Hence the correct option is (D)
Note:
- All the waves possess the property of interference.
- There are two types of interference. One is constructive interference and the other is destructive interference.
- Beats cannot be heard if the difference of the frequencies is more than $10Hz$.
- Beats are dependent on the amplitude of the sound waves. Beats cannot be heard properly if the difference of the amplitude is high.
- We can solve this problem by using the concept of beats of tuning forks. We should know about wave- interference.
- We know that a tuning fork is a two pronged metal device that vibrates when struck.
- When the waves of sound are in the same phase they lead to constructive interference and when they are 180 degrees out of phase, they lead to destructive interference.
- A beat is an interference pattern of sounds of different frequencies.
Complete step by step solution:
In the same medium when two waves of sounds meet while travelling on intersecting or coincident paths, a net effect of combination of two or more waves will arise. It is termed as interference.
Let us consider the frequency of two tuning forks $\mathop n\nolimits_1 $ and$\mathop n\nolimits_2 $. Here the beat between the sound waves emitted from the tuning fork is $6$.
Therefore,$\mathop n\nolimits_1 - \mathop n\nolimits_2 = 6$ (i)
[As beat is equal to the difference of frequencies of two tuning forks here]
Now, the first fork has the frequency of $3\% $ higher than a standard one.
Let us assume, the frequency of standard one is equal to $n$.
Therefore, $\mathop n\nolimits_1 = (n + n \times \dfrac{3}{{100}}) = n \times (1 + \dfrac{3}{{100}}) = \dfrac{{103}}{{100}}n$
Similarly, for the second fork, it has the frequency $2\% $ less than the standard fork.
Therefore, $\mathop n\nolimits_2 = (n - n \times \dfrac{2}{{100}}) = n \times (1 - \dfrac{2}{{100}}) = \dfrac{{98}}{{100}}n$
Now, putting the values of $\mathop n\nolimits_1 $ and$\mathop n\nolimits_2 $ in the equation (i)
Therefore,
$\mathop n\nolimits_1 - \mathop n\nolimits_2 = 6$
$ \Rightarrow $ $\dfrac{{103n}}{{100}} - \dfrac{{98n}}{{100}} = 6$
$ \Rightarrow $ $\dfrac{{5n}}{{100}} = 6$
$ \Rightarrow $ $n = \dfrac{{100 \times 6}}{5} = 120$
Therefore, $n = 120Hz$.
Now, the frequency of first tuning fork $ \Rightarrow \mathop n\nolimits_1 = \dfrac{{103n}}{{100}} = \dfrac{{103 \times 120}}{{100}} = 123.6$
And the frequency of the second tuning fork $ \Rightarrow \mathop n\nolimits_2 = \dfrac{{98n}}{{100}} = \dfrac{{98 \times 120}}{{100}} = 117.6$
Therefore $\mathop n\nolimits_1 = 123.6Hz$ and $\mathop n\nolimits_2 = 117.6Hz$.
Hence the correct option is (D)
Note:
- All the waves possess the property of interference.
- There are two types of interference. One is constructive interference and the other is destructive interference.
- Beats cannot be heard if the difference of the frequencies is more than $10Hz$.
- Beats are dependent on the amplitude of the sound waves. Beats cannot be heard properly if the difference of the amplitude is high.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE