
Two unbiased dice are thrown. The probability that the total of the numbers on the
Dice is greater than $10$ is $\dfrac{1}{x}$, what is the value of $x$.
Answer
621.6k+ views
Hint: Here two unbiased dice are thrown so the total number of possible outcomes will be $36$. You have to count the number of favorable outcomes where the total of the numbers on the dice is greater than $10$.
As we know, when two unbiased dice are thrown total number of outcomes will be $36$, which are
$
\left( {1,1} \right)\left( {1,2} \right)\left( {1,3} \right)\left( {1,4} \right)\left( {1,5} \right)\left( {1,6} \right) \\
\left( {2,1} \right)\left( {2,2} \right)\left( {2,3} \right)\left( {2,4} \right)\left( {2,5} \right)\left( {2,6} \right) \\
\left( {3,1} \right)\left( {3,2} \right)\left( {3,3} \right)\left( {3,4} \right)\left( {3,5} \right)\left( {3,6} \right) \\
\left( {4,1} \right)\left( {4,2} \right)\left( {4,3} \right)\left( {4,4} \right)\left( {4,5} \right)\left( {4,6} \right) \\
\left( {5,1} \right)\left( {5,2} \right)\left( {5,3} \right)\left( {5,4} \right)\left( {5,5} \right)\left( {5,6} \right) \\
\left( {6,1} \right)\left( {6,2} \right)\left( {6,3} \right)\left( {6,4} \right)\left( {6,5} \right)\left( {6,6} \right) \\
$
These are total $36$ outcomes which will be obtained on throwing two unbiased dice.
Let $E = $Event of getting the total of numbers on the dice is greater than $10$.
So total number of outcomes which sum is greater than $10$are $\left( {5,6} \right)\left( {6,5} \right)\left( {6,6} \right)$ and hence favorable outcomes to $E$ $ = 3$
Probability $P\left( E \right) = \dfrac{{\left( {{\text{no}}{\text{. of favorable outcomes}}} \right)}}{{\left( {{\text{total no}}{\text{. of possible outcomes}}} \right)}}$
$\therefore P\left( E \right) = \dfrac{3}{{36}} = \dfrac{1}{{12}}$
On comparing it with $\dfrac{1}{x}$ we get $x = 12$ is the required answer.
Note: Whenever you get this type of question the key concept of solving is you have to know all the outcomes obtained from the event or if you can write them then you must write it on your copy then count all the favorable outcomes and use the formula of probability to get the answer.
As we know, when two unbiased dice are thrown total number of outcomes will be $36$, which are
$
\left( {1,1} \right)\left( {1,2} \right)\left( {1,3} \right)\left( {1,4} \right)\left( {1,5} \right)\left( {1,6} \right) \\
\left( {2,1} \right)\left( {2,2} \right)\left( {2,3} \right)\left( {2,4} \right)\left( {2,5} \right)\left( {2,6} \right) \\
\left( {3,1} \right)\left( {3,2} \right)\left( {3,3} \right)\left( {3,4} \right)\left( {3,5} \right)\left( {3,6} \right) \\
\left( {4,1} \right)\left( {4,2} \right)\left( {4,3} \right)\left( {4,4} \right)\left( {4,5} \right)\left( {4,6} \right) \\
\left( {5,1} \right)\left( {5,2} \right)\left( {5,3} \right)\left( {5,4} \right)\left( {5,5} \right)\left( {5,6} \right) \\
\left( {6,1} \right)\left( {6,2} \right)\left( {6,3} \right)\left( {6,4} \right)\left( {6,5} \right)\left( {6,6} \right) \\
$
These are total $36$ outcomes which will be obtained on throwing two unbiased dice.
Let $E = $Event of getting the total of numbers on the dice is greater than $10$.
So total number of outcomes which sum is greater than $10$are $\left( {5,6} \right)\left( {6,5} \right)\left( {6,6} \right)$ and hence favorable outcomes to $E$ $ = 3$
Probability $P\left( E \right) = \dfrac{{\left( {{\text{no}}{\text{. of favorable outcomes}}} \right)}}{{\left( {{\text{total no}}{\text{. of possible outcomes}}} \right)}}$
$\therefore P\left( E \right) = \dfrac{3}{{36}} = \dfrac{1}{{12}}$
On comparing it with $\dfrac{1}{x}$ we get $x = 12$ is the required answer.
Note: Whenever you get this type of question the key concept of solving is you have to know all the outcomes obtained from the event or if you can write them then you must write it on your copy then count all the favorable outcomes and use the formula of probability to get the answer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the minimum age for fighting the election in class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

My birthday is June 27 a On b Into c Between d In class 10 english CBSE

