Ultraviolet light of wavelength \[{\lambda _1}\] and \[{\lambda _2}\] when allowed to fall on hydrogen atoms in their ground state is found to liberate electron with kinetic energy 1.8 eV and 4.0 eV respectively. Find the value of \[\dfrac{{{\lambda _2}}}{{{\lambda _1}}}\] .
A. $\dfrac{8}{7} \\ $
B. $\dfrac{7}{8} \\ $
C. $\dfrac{{20}}{9} \\ $
D. $\dfrac{9}{{20}}$
Answer
Verified
115.8k+ views
Hint:The postulates of Bohr say energy can only be emitted or absorbed when an electron changes from one non-radiating orbit to another. Here energy is falling so this energy is absorbed by electrons.
Formula used:
Energy is given by,
$E = hf = \dfrac{{hc}}{\lambda }$
Where, $h$ is the planck’s constant and $f$ is the frequency of the radiation.
Complete step by step solution:
The Neil Bohr Model has three Bohr's Postulates, here the third postulate is explained in more detail below: only when an electron jumps from one non-radiating orbit to another does energy either emit or absorb. When an electron jumps from the inner to the outer orbit, the energy difference between the two stationary orbits is absorbed, and when an electron jumps from the outer to the inner orbit, it is expelled.
If $E_1$ and $E_2$ are equal to the total energy (T.E.) of an e- in its inner and outer stationary orbits, respectively, the frequency of radiation released during a jump from the outer to the inner orbit is given by:
\[\;E{\text{ }} = \;{\text{ }}hf\;{\text{ }} = {\text{ }}{E_2} - {\text{ }}{E_1} \ldots .\left( 3 \right)\]
We are aware that the majority of hydrogen atoms exist in the ground state, and that when this atom is exposed to energy from an electron collision or heat, the electrons may need to be raised to a higher energy level, such as from n = 1 to n = 2, 3, etc. The difference between their energies may be determined using equation (3).
If we apply $E = hf = \dfrac{{hc}}{\lambda }$.
So, by applying this relation we get,
$\dfrac{{{E_1}}}{{{E_2}}} = \dfrac{{\dfrac{{hc}}{{{\lambda _1}}}}}{{\dfrac{{hc}}{{{\lambda _2}}}}} = \dfrac{{{\lambda _2}}}{{{\lambda _1}}} \\ $
From it we can get
$\dfrac{{{\lambda _2}}}{{{\lambda _1}}} = \dfrac{{{E_1}}}{{{E_2}}} \\
\Rightarrow \dfrac{{{\lambda _2}}}{{{\lambda _1}}}= \dfrac{{1.8}}{4} \\
\therefore \dfrac{{{\lambda _2}}}{{{\lambda _1}}}= \dfrac{9}{{20}}$
Therefore, option D is the correct answer.
Notes There are three Bohr's Postulates in the Neil Bohr Model, and the third one is detailed in greater detail below: The only time energy emits or absorbs is when an electron transitions from one non-radiating orbit to another. When an electron jumps from the inner to the outer orbit, the energy difference between the two stationary orbits is absorbed, and when an electron jumps from the outer to the inner orbit, it is ejected.
Formula used:
Energy is given by,
$E = hf = \dfrac{{hc}}{\lambda }$
Where, $h$ is the planck’s constant and $f$ is the frequency of the radiation.
Complete step by step solution:
The Neil Bohr Model has three Bohr's Postulates, here the third postulate is explained in more detail below: only when an electron jumps from one non-radiating orbit to another does energy either emit or absorb. When an electron jumps from the inner to the outer orbit, the energy difference between the two stationary orbits is absorbed, and when an electron jumps from the outer to the inner orbit, it is expelled.
If $E_1$ and $E_2$ are equal to the total energy (T.E.) of an e- in its inner and outer stationary orbits, respectively, the frequency of radiation released during a jump from the outer to the inner orbit is given by:
\[\;E{\text{ }} = \;{\text{ }}hf\;{\text{ }} = {\text{ }}{E_2} - {\text{ }}{E_1} \ldots .\left( 3 \right)\]
We are aware that the majority of hydrogen atoms exist in the ground state, and that when this atom is exposed to energy from an electron collision or heat, the electrons may need to be raised to a higher energy level, such as from n = 1 to n = 2, 3, etc. The difference between their energies may be determined using equation (3).
If we apply $E = hf = \dfrac{{hc}}{\lambda }$.
So, by applying this relation we get,
$\dfrac{{{E_1}}}{{{E_2}}} = \dfrac{{\dfrac{{hc}}{{{\lambda _1}}}}}{{\dfrac{{hc}}{{{\lambda _2}}}}} = \dfrac{{{\lambda _2}}}{{{\lambda _1}}} \\ $
From it we can get
$\dfrac{{{\lambda _2}}}{{{\lambda _1}}} = \dfrac{{{E_1}}}{{{E_2}}} \\
\Rightarrow \dfrac{{{\lambda _2}}}{{{\lambda _1}}}= \dfrac{{1.8}}{4} \\
\therefore \dfrac{{{\lambda _2}}}{{{\lambda _1}}}= \dfrac{9}{{20}}$
Therefore, option D is the correct answer.
Notes There are three Bohr's Postulates in the Neil Bohr Model, and the third one is detailed in greater detail below: The only time energy emits or absorbs is when an electron transitions from one non-radiating orbit to another. When an electron jumps from the inner to the outer orbit, the energy difference between the two stationary orbits is absorbed, and when an electron jumps from the outer to the inner orbit, it is ejected.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main Chemistry Exam Pattern 2025 (Revised) - Vedantu
JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Physics Average Value and RMS Value JEE Main 2025
Degree of Dissociation and Its Formula With Solved Example for JEE
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Charging and Discharging of Capacitor