
$\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left[ x-3 \right]}{x-3} \right]$ , where $\left[ . \right]$ denotes greatest integer function, is equal to
(a) 0
(b) 1
(c) Does not exist
(d) \[\sin 1\]
Answer
621.3k+ views
Hint: To evaluate the given limit, simplify the function using the formulas related to the greatest integer function and then apply the limits to the given function to get the value of the limit.
We have been provided the function $\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left[ x-3 \right]}{x-3} \right]$
We know that the function \[\left[ {} \right]\] stands for greatest integer function. This function rounds down a real number to the nearest integer. This function gives the value of the greatest integer that is less than or equal to the given real number.
We will evaluate the right hand and left hand limit of the given function.
Firstly, we will evaluate the left hand limit of the function.
We know that \[\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\left[ x \right]=a\] and \[\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\left[ x \right]=a-1\].
Thus, we have \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin \left[ x-3 \right]}{x-3}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin \left( x-3 \right)}{x-3}\].
As we know that $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$. We get this limit with the use of L’Hopital Rule.
Thus, we have \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin \left[ x-3 \right]}{x-3}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin \left( x-3 \right)}{x-3}=1\].
Hence, we have \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left[ \dfrac{\sin \left[ x-3 \right]}{x-3} \right]=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left[ 1 \right]=1\].
Now, we will evaluate the left hand side of the limit.
Thus, we have \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\sin \left[ x-3 \right]}{x-3}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\sin \left( x-3 \right)}{x-3}\].
As we know that $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$. We get this limit with the use of L’Hopital Rule.
Thus, we have \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\sin \left[ x-3 \right]}{x-3}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\sin \left( x-3 \right)}{x-3}=1\].
Hence, we have \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \dfrac{\sin \left[ x-3 \right]}{x-3} \right]=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left[ 1 \right]=1\].
Thus, we get the value of limit as \[\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left[ x-3 \right]}{x-3} \right]=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left[ \dfrac{\sin \left[ x-3 \right]}{x-3} \right]=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \dfrac{\sin \left[ x-3 \right]}{x-3} \right]=1\].
Limit of a function is a fundamental concept in calculus that analyses the behaviour of that function around a point. The notation of a limit has many applications in modern calculus. We can use the limit of a function to check differentiability of the function around any point. We can also use the limit to integrate a function defined over an interval.
When we say that a function has limit L, it means that the function gets closer and closer to the value L around the point at which the limit is applied to.
Answer is Option (b)
Note: To evaluate the value of the limit of the function, it’s necessary to know about the greatest integer function. Simplify the terms involving greatest integer function using some of its properties to evaluate the limit of the function.
We have been provided the function $\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left[ x-3 \right]}{x-3} \right]$
We know that the function \[\left[ {} \right]\] stands for greatest integer function. This function rounds down a real number to the nearest integer. This function gives the value of the greatest integer that is less than or equal to the given real number.
We will evaluate the right hand and left hand limit of the given function.
Firstly, we will evaluate the left hand limit of the function.
We know that \[\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,\left[ x \right]=a\] and \[\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,\left[ x \right]=a-1\].
Thus, we have \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin \left[ x-3 \right]}{x-3}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin \left( x-3 \right)}{x-3}\].
As we know that $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$. We get this limit with the use of L’Hopital Rule.
Thus, we have \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin \left[ x-3 \right]}{x-3}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sin \left( x-3 \right)}{x-3}=1\].
Hence, we have \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left[ \dfrac{\sin \left[ x-3 \right]}{x-3} \right]=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left[ 1 \right]=1\].
Now, we will evaluate the left hand side of the limit.
Thus, we have \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\sin \left[ x-3 \right]}{x-3}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\sin \left( x-3 \right)}{x-3}\].
As we know that $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$. We get this limit with the use of L’Hopital Rule.
Thus, we have \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\sin \left[ x-3 \right]}{x-3}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\dfrac{\sin \left( x-3 \right)}{x-3}=1\].
Hence, we have \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \dfrac{\sin \left[ x-3 \right]}{x-3} \right]=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left[ 1 \right]=1\].
Thus, we get the value of limit as \[\underset{x\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left[ x-3 \right]}{x-3} \right]=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left[ \dfrac{\sin \left[ x-3 \right]}{x-3} \right]=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left[ \dfrac{\sin \left[ x-3 \right]}{x-3} \right]=1\].
Limit of a function is a fundamental concept in calculus that analyses the behaviour of that function around a point. The notation of a limit has many applications in modern calculus. We can use the limit of a function to check differentiability of the function around any point. We can also use the limit to integrate a function defined over an interval.
When we say that a function has limit L, it means that the function gets closer and closer to the value L around the point at which the limit is applied to.
Answer is Option (b)
Note: To evaluate the value of the limit of the function, it’s necessary to know about the greatest integer function. Simplify the terms involving greatest integer function using some of its properties to evaluate the limit of the function.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

