Unit vectors $\overrightarrow{a}$ and $\overrightarrow{b}$ are perpendicular, and unit vector $\overrightarrow{c}$ is inclined at an angle $\theta $ to both $\overrightarrow{a}$ and $\overrightarrow{b}$ . If $\overrightarrow{c}=\alpha \overrightarrow{a}+\beta \overrightarrow{b}+\gamma \left( \overrightarrow{a}\times \overrightarrow{b} \right)$ , then
(a). $\alpha =\beta $
(b). ${{\gamma }^{2}}=1-2{{\alpha }^{2}}$
(c). ${{\gamma }^{2}}=-\cos 2\theta $
(d). ${{\beta }^{2}}=\dfrac{1+\cos 2\theta }{2}$
Answer
Verified
500.1k+ views
Hint:- Use the formula that $\cos \phi =\dfrac{\overrightarrow{a}.\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$ , where $\phi $ is the angle between $\overrightarrow{a}$ and $\overrightarrow{b}$ . Also, the value of $|\overrightarrow{a}|$ is 1, provided $\overrightarrow{a}$ is a unit vector.
Complete step-by-step solution -
It is given in the question that $\overrightarrow{a}$ and $\overrightarrow{b}$ are perpendicular, and we know that the dot product of perpendicular vectors is zero.
$\therefore \overrightarrow{a}.\overrightarrow{b}=0.........(i)$
Now, as the angle between $\overrightarrow{a}$ and $\overrightarrow{c}$ is $\theta $ and the angle between $\overrightarrow{b}$ and $\overrightarrow{c}$ is also $\theta $ . So, the cosine of both the angles would be the same. We also know the $\cos \phi =\dfrac{\overrightarrow{a}.\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$ , where $\phi $ is the angle between $\overrightarrow{a}$ and $\overrightarrow{b}$ .
$\therefore \overrightarrow{a}.\overrightarrow{c}=\overrightarrow{b}.\overrightarrow{c}$
$\Rightarrow \overrightarrow{a}.\left( \alpha \overrightarrow{a}+\beta \overrightarrow{b}+\gamma \left( \overrightarrow{a}\times \overrightarrow{b} \right) \right)=\overrightarrow{b}.\left( \alpha \overrightarrow{a}+\beta \overrightarrow{b}+\gamma \left( \overrightarrow{a}\times \overrightarrow{b} \right) \right)$
$\Rightarrow \alpha \overrightarrow{a}.\overrightarrow{a}+\beta \overrightarrow{a}.\overrightarrow{b}+\gamma \overrightarrow{a}.\left( \overrightarrow{a}\times \overrightarrow{b} \right)=\alpha \overrightarrow{a}.\overrightarrow{b}+\beta \overrightarrow{b}.\overrightarrow{b}+\gamma \overrightarrow{b}.\left( \overrightarrow{a}\times \overrightarrow{b} \right)$
Now we will substitute the required value from equation (i). On doing so, we get
$\Rightarrow \alpha \overrightarrow{a}.\overrightarrow{a}+0+\gamma \overrightarrow{a}.\left( \overrightarrow{a}\times \overrightarrow{b} \right)=0+\beta \overrightarrow{b}.\overrightarrow{b}+\gamma \overrightarrow{b}.\left( \overrightarrow{a}\times \overrightarrow{b} \right)$
We also know that $\overrightarrow{a}$ and $\overrightarrow{b}$ is always perpendicular to $\overrightarrow{a}\times \overrightarrow{b}$ and the dot product of perpendicular vectors is zero.
$\therefore \alpha \overrightarrow{a}.\overrightarrow{a}+0=\beta \overrightarrow{b}.\overrightarrow{b}$
Now we know that $\overrightarrow{a}.\overrightarrow{a}=|\overrightarrow{a}{{|}^{2}}$ . So, we get
$\alpha |\overrightarrow{a}{{|}^{2}}=\beta |\overrightarrow{b}{{|}^{2}}$
Also, it is given that $\overrightarrow{a}$ and $\overrightarrow{b}$ are unit vectors. Therefore, the magnitude of $\overrightarrow{a}$ and $\overrightarrow{b}$ is equal to 1.
$\alpha \times 1=\beta \times 1$
$\Rightarrow \alpha =\beta $
Therefore, the value of the $\alpha $ must be equal to the value of $\beta $ for the conditions given in the question to be satisfied.
Hence, the answer to the above question is option (a).
Note: It is important to remember the properties of the vector product and the scalar product for solving most of the problems related to vectors. Also, be careful about the calculations and the signs you are using while solving the calculation.
Complete step-by-step solution -
It is given in the question that $\overrightarrow{a}$ and $\overrightarrow{b}$ are perpendicular, and we know that the dot product of perpendicular vectors is zero.
$\therefore \overrightarrow{a}.\overrightarrow{b}=0.........(i)$
Now, as the angle between $\overrightarrow{a}$ and $\overrightarrow{c}$ is $\theta $ and the angle between $\overrightarrow{b}$ and $\overrightarrow{c}$ is also $\theta $ . So, the cosine of both the angles would be the same. We also know the $\cos \phi =\dfrac{\overrightarrow{a}.\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$ , where $\phi $ is the angle between $\overrightarrow{a}$ and $\overrightarrow{b}$ .
$\therefore \overrightarrow{a}.\overrightarrow{c}=\overrightarrow{b}.\overrightarrow{c}$
$\Rightarrow \overrightarrow{a}.\left( \alpha \overrightarrow{a}+\beta \overrightarrow{b}+\gamma \left( \overrightarrow{a}\times \overrightarrow{b} \right) \right)=\overrightarrow{b}.\left( \alpha \overrightarrow{a}+\beta \overrightarrow{b}+\gamma \left( \overrightarrow{a}\times \overrightarrow{b} \right) \right)$
$\Rightarrow \alpha \overrightarrow{a}.\overrightarrow{a}+\beta \overrightarrow{a}.\overrightarrow{b}+\gamma \overrightarrow{a}.\left( \overrightarrow{a}\times \overrightarrow{b} \right)=\alpha \overrightarrow{a}.\overrightarrow{b}+\beta \overrightarrow{b}.\overrightarrow{b}+\gamma \overrightarrow{b}.\left( \overrightarrow{a}\times \overrightarrow{b} \right)$
Now we will substitute the required value from equation (i). On doing so, we get
$\Rightarrow \alpha \overrightarrow{a}.\overrightarrow{a}+0+\gamma \overrightarrow{a}.\left( \overrightarrow{a}\times \overrightarrow{b} \right)=0+\beta \overrightarrow{b}.\overrightarrow{b}+\gamma \overrightarrow{b}.\left( \overrightarrow{a}\times \overrightarrow{b} \right)$
We also know that $\overrightarrow{a}$ and $\overrightarrow{b}$ is always perpendicular to $\overrightarrow{a}\times \overrightarrow{b}$ and the dot product of perpendicular vectors is zero.
$\therefore \alpha \overrightarrow{a}.\overrightarrow{a}+0=\beta \overrightarrow{b}.\overrightarrow{b}$
Now we know that $\overrightarrow{a}.\overrightarrow{a}=|\overrightarrow{a}{{|}^{2}}$ . So, we get
$\alpha |\overrightarrow{a}{{|}^{2}}=\beta |\overrightarrow{b}{{|}^{2}}$
Also, it is given that $\overrightarrow{a}$ and $\overrightarrow{b}$ are unit vectors. Therefore, the magnitude of $\overrightarrow{a}$ and $\overrightarrow{b}$ is equal to 1.
$\alpha \times 1=\beta \times 1$
$\Rightarrow \alpha =\beta $
Therefore, the value of the $\alpha $ must be equal to the value of $\beta $ for the conditions given in the question to be satisfied.
Hence, the answer to the above question is option (a).
Note: It is important to remember the properties of the vector product and the scalar product for solving most of the problems related to vectors. Also, be careful about the calculations and the signs you are using while solving the calculation.
Recently Updated Pages
Questions & Answers - Ask your doubts
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Master Class 11 Science: Engaging Questions & Answers for Success
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
In case of conflict between fundamental rights of citizens class 7 social science CBSE
Using the following information to help you answer class 12 chemistry CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Draw a labelled sketch of the human eye class 12 physics CBSE
What is a transformer Explain the principle construction class 12 physics CBSE
What are the major means of transport Explain each class 12 social science CBSE
How much time does it take to bleed after eating p class 12 biology CBSE