
Unit vectors $\overrightarrow{a}$ and $\overrightarrow{b}$ are perpendicular, and unit vector $\overrightarrow{c}$ is inclined at an angle $\theta $ to both $\overrightarrow{a}$ and $\overrightarrow{b}$ . If $\overrightarrow{c}=\alpha \overrightarrow{a}+\beta \overrightarrow{b}+\gamma \left( \overrightarrow{a}\times \overrightarrow{b} \right)$ , then
(a). $\alpha =\beta $
(b). ${{\gamma }^{2}}=1-2{{\alpha }^{2}}$
(c). ${{\gamma }^{2}}=-\cos 2\theta $
(d). ${{\beta }^{2}}=\dfrac{1+\cos 2\theta }{2}$
Answer
512.4k+ views
Hint:- Use the formula that $\cos \phi =\dfrac{\overrightarrow{a}.\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$ , where $\phi $ is the angle between $\overrightarrow{a}$ and $\overrightarrow{b}$ . Also, the value of $|\overrightarrow{a}|$ is 1, provided $\overrightarrow{a}$ is a unit vector.
Complete step-by-step solution -
It is given in the question that $\overrightarrow{a}$ and $\overrightarrow{b}$ are perpendicular, and we know that the dot product of perpendicular vectors is zero.
$\therefore \overrightarrow{a}.\overrightarrow{b}=0.........(i)$
Now, as the angle between $\overrightarrow{a}$ and $\overrightarrow{c}$ is $\theta $ and the angle between $\overrightarrow{b}$ and $\overrightarrow{c}$ is also $\theta $ . So, the cosine of both the angles would be the same. We also know the $\cos \phi =\dfrac{\overrightarrow{a}.\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$ , where $\phi $ is the angle between $\overrightarrow{a}$ and $\overrightarrow{b}$ .
$\therefore \overrightarrow{a}.\overrightarrow{c}=\overrightarrow{b}.\overrightarrow{c}$
$\Rightarrow \overrightarrow{a}.\left( \alpha \overrightarrow{a}+\beta \overrightarrow{b}+\gamma \left( \overrightarrow{a}\times \overrightarrow{b} \right) \right)=\overrightarrow{b}.\left( \alpha \overrightarrow{a}+\beta \overrightarrow{b}+\gamma \left( \overrightarrow{a}\times \overrightarrow{b} \right) \right)$
$\Rightarrow \alpha \overrightarrow{a}.\overrightarrow{a}+\beta \overrightarrow{a}.\overrightarrow{b}+\gamma \overrightarrow{a}.\left( \overrightarrow{a}\times \overrightarrow{b} \right)=\alpha \overrightarrow{a}.\overrightarrow{b}+\beta \overrightarrow{b}.\overrightarrow{b}+\gamma \overrightarrow{b}.\left( \overrightarrow{a}\times \overrightarrow{b} \right)$
Now we will substitute the required value from equation (i). On doing so, we get
$\Rightarrow \alpha \overrightarrow{a}.\overrightarrow{a}+0+\gamma \overrightarrow{a}.\left( \overrightarrow{a}\times \overrightarrow{b} \right)=0+\beta \overrightarrow{b}.\overrightarrow{b}+\gamma \overrightarrow{b}.\left( \overrightarrow{a}\times \overrightarrow{b} \right)$
We also know that $\overrightarrow{a}$ and $\overrightarrow{b}$ is always perpendicular to $\overrightarrow{a}\times \overrightarrow{b}$ and the dot product of perpendicular vectors is zero.
$\therefore \alpha \overrightarrow{a}.\overrightarrow{a}+0=\beta \overrightarrow{b}.\overrightarrow{b}$
Now we know that $\overrightarrow{a}.\overrightarrow{a}=|\overrightarrow{a}{{|}^{2}}$ . So, we get
$\alpha |\overrightarrow{a}{{|}^{2}}=\beta |\overrightarrow{b}{{|}^{2}}$
Also, it is given that $\overrightarrow{a}$ and $\overrightarrow{b}$ are unit vectors. Therefore, the magnitude of $\overrightarrow{a}$ and $\overrightarrow{b}$ is equal to 1.
$\alpha \times 1=\beta \times 1$
$\Rightarrow \alpha =\beta $
Therefore, the value of the $\alpha $ must be equal to the value of $\beta $ for the conditions given in the question to be satisfied.
Hence, the answer to the above question is option (a).
Note: It is important to remember the properties of the vector product and the scalar product for solving most of the problems related to vectors. Also, be careful about the calculations and the signs you are using while solving the calculation.
Complete step-by-step solution -
It is given in the question that $\overrightarrow{a}$ and $\overrightarrow{b}$ are perpendicular, and we know that the dot product of perpendicular vectors is zero.
$\therefore \overrightarrow{a}.\overrightarrow{b}=0.........(i)$
Now, as the angle between $\overrightarrow{a}$ and $\overrightarrow{c}$ is $\theta $ and the angle between $\overrightarrow{b}$ and $\overrightarrow{c}$ is also $\theta $ . So, the cosine of both the angles would be the same. We also know the $\cos \phi =\dfrac{\overrightarrow{a}.\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$ , where $\phi $ is the angle between $\overrightarrow{a}$ and $\overrightarrow{b}$ .
$\therefore \overrightarrow{a}.\overrightarrow{c}=\overrightarrow{b}.\overrightarrow{c}$
$\Rightarrow \overrightarrow{a}.\left( \alpha \overrightarrow{a}+\beta \overrightarrow{b}+\gamma \left( \overrightarrow{a}\times \overrightarrow{b} \right) \right)=\overrightarrow{b}.\left( \alpha \overrightarrow{a}+\beta \overrightarrow{b}+\gamma \left( \overrightarrow{a}\times \overrightarrow{b} \right) \right)$
$\Rightarrow \alpha \overrightarrow{a}.\overrightarrow{a}+\beta \overrightarrow{a}.\overrightarrow{b}+\gamma \overrightarrow{a}.\left( \overrightarrow{a}\times \overrightarrow{b} \right)=\alpha \overrightarrow{a}.\overrightarrow{b}+\beta \overrightarrow{b}.\overrightarrow{b}+\gamma \overrightarrow{b}.\left( \overrightarrow{a}\times \overrightarrow{b} \right)$
Now we will substitute the required value from equation (i). On doing so, we get
$\Rightarrow \alpha \overrightarrow{a}.\overrightarrow{a}+0+\gamma \overrightarrow{a}.\left( \overrightarrow{a}\times \overrightarrow{b} \right)=0+\beta \overrightarrow{b}.\overrightarrow{b}+\gamma \overrightarrow{b}.\left( \overrightarrow{a}\times \overrightarrow{b} \right)$
We also know that $\overrightarrow{a}$ and $\overrightarrow{b}$ is always perpendicular to $\overrightarrow{a}\times \overrightarrow{b}$ and the dot product of perpendicular vectors is zero.
$\therefore \alpha \overrightarrow{a}.\overrightarrow{a}+0=\beta \overrightarrow{b}.\overrightarrow{b}$
Now we know that $\overrightarrow{a}.\overrightarrow{a}=|\overrightarrow{a}{{|}^{2}}$ . So, we get
$\alpha |\overrightarrow{a}{{|}^{2}}=\beta |\overrightarrow{b}{{|}^{2}}$
Also, it is given that $\overrightarrow{a}$ and $\overrightarrow{b}$ are unit vectors. Therefore, the magnitude of $\overrightarrow{a}$ and $\overrightarrow{b}$ is equal to 1.
$\alpha \times 1=\beta \times 1$
$\Rightarrow \alpha =\beta $
Therefore, the value of the $\alpha $ must be equal to the value of $\beta $ for the conditions given in the question to be satisfied.
Hence, the answer to the above question is option (a).
Note: It is important to remember the properties of the vector product and the scalar product for solving most of the problems related to vectors. Also, be careful about the calculations and the signs you are using while solving the calculation.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
