Use identities to evaluate \[{\left( {97} \right)^2}\] .
Answer
Verified
407.4k+ views
Hint:Solve using formula
\[\left[ {{{\left( {a - b} \right)}^2} = {a^2} + {b^2} - 2ab} \right]\]
Complete step-by-step solution:
\[{\left( {97} \right)^2} = {\left( {100 - 3} \right)^2}\]
By using the formula given in hint
\[\left[ {{{\left( {a - b} \right)}^2} = {a^2} + {b^2} - 2ab} \right]\]
We get,
\[ = {\left( {100} \right)^2} + {\left( 3 \right)^2} - 2\left( {100 \times 3} \right)\]
\[ = {\left( {100} \right)^2} + {\left( 3 \right)^2} - 2\left( {300} \right)\]
\[ = \left( {100 \times 100} \right) + \left( {3 \times 3} \right) - \left( {2 \times 300} \right)\]
\[ = 10000 + 9 - 600\]
\[ = 1009 - 600\]
\[ = 9409\]
Therefore 9409 is the required solution.
An identity is a mathematical equality that connects one mathematical expression A to another mathematical expression B, such that A and B (which may include some variables) generate the same value for all values of the variables within a given range of validity.
Note: A variable and constant expression is known as an algebraic expression. A variable in an expression may have any meaning. As a result, if the variable values change, the expression value will change. Algebraic identity, on the other hand, is equality that holds for all values of the variables.
The substitution approach is used to verify the algebraic identities. Substitute the values for the variables and perform the arithmetic operation with this process. The activity method is another way to check the algebraic identity. You'll need a basic understanding of geometry for this process, as well as some materials to prove your identity.
\[\left[ {{{\left( {a - b} \right)}^2} = {a^2} + {b^2} - 2ab} \right]\]
Complete step-by-step solution:
\[{\left( {97} \right)^2} = {\left( {100 - 3} \right)^2}\]
By using the formula given in hint
\[\left[ {{{\left( {a - b} \right)}^2} = {a^2} + {b^2} - 2ab} \right]\]
We get,
\[ = {\left( {100} \right)^2} + {\left( 3 \right)^2} - 2\left( {100 \times 3} \right)\]
\[ = {\left( {100} \right)^2} + {\left( 3 \right)^2} - 2\left( {300} \right)\]
\[ = \left( {100 \times 100} \right) + \left( {3 \times 3} \right) - \left( {2 \times 300} \right)\]
\[ = 10000 + 9 - 600\]
\[ = 1009 - 600\]
\[ = 9409\]
Therefore 9409 is the required solution.
An identity is a mathematical equality that connects one mathematical expression A to another mathematical expression B, such that A and B (which may include some variables) generate the same value for all values of the variables within a given range of validity.
Note: A variable and constant expression is known as an algebraic expression. A variable in an expression may have any meaning. As a result, if the variable values change, the expression value will change. Algebraic identity, on the other hand, is equality that holds for all values of the variables.
The substitution approach is used to verify the algebraic identities. Substitute the values for the variables and perform the arithmetic operation with this process. The activity method is another way to check the algebraic identity. You'll need a basic understanding of geometry for this process, as well as some materials to prove your identity.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE