Answer
Verified
429.9k+ views
Hint:Binomial theorem is a method used to expand a binomial term that is raised to some power of positive integer. According to binomial theorem, the nth power of the sum of two numbers (say a and b) can be expressed (expanded) as the sum or series of (n+1) terms, provided that ‘n’ is a positive integer.
Formula used:
${{(x+y)}^{n}}=\sum\limits_{i=0}^{n}{{}^{n}{{C}_{i}}{{x}^{n-i}}{{y}^{i}}}$,
where x and y are real numbers and n is a positive integer (a natural number).
${}^{n}{{C}_{i}}=\dfrac{n!}{i!(n-i)!}$
Complete step by step answer:
Let us first understand what is the binomial theorem.Binomial theorem is a method used to expand a binomial term that is raised to some power of positive integer. According to binomial theorem, the nth power of the sum of two numbers (say a and b) can be expressed (expanded) as the sum or series of (n+1) terms, provided that ‘n’ is a positive integer.
Suppose we have an expression ${{(x+y)}^{n}}$, where x and y are real numbers and n is a positive integer (a natural number).
Then, the binomial expansion of the above expression is given as
${{(x+y)}^{n}}=\sum\limits_{i=0}^{n}{{}^{n}{{C}_{i}}{{x}^{n-i}}{{y}^{i}}}$
Here, i is a natural number taking values from 0 to n.
When we expand the summation we get that ${{(x+y)}^{n}}={}^{n}{{C}_{0}}{{x}^{n-0}}{{y}^{0}}+{}^{n}{{C}_{1}}{{x}^{n-1}}{{y}^{1}}+{}^{n}{{C}_{2}}{{x}^{n-2}}{{y}^{2}}+.......+{}^{n}{{C}_{n-1}}{{x}^{n-(n-1)}}{{y}^{n-1}}+{}^{n}{{C}_{n}}{{x}^{n-n}}{{y}^{n}}$.
In the given question, $n=4$,
Therefore, the given expression can expanded, with the help of binomial theorem as
${{(2x-1)}^{4}}={}^{4}{{C}_{0}}{{(2x)}^{4-0}}{{(-1)}^{0}}+{}^{4}{{C}_{1}}{{(2x)}^{4-1}}{{(-1)}^{1}}+{}^{4}{{C}_{2}}{{(2x)}^{4-2}}{{(-1)}^{2}}+{}^{4}{{C}_{3}}{{(2x)}^{4-3}}{{(-1)}^{3}}+{}^{4}{{C}_{4}}{{(2x)}^{4-4}}{{(-1)}^{4}}$
This equation can be further simplified to
${{(2x-1)}^{4}}={}^{4}{{C}_{0}}{{(2x)}^{4}}{{(-1)}^{0}}+{}^{4}{{C}_{1}}{{(2x)}^{3}}{{(-1)}^{1}}+{}^{4}{{C}_{2}}{{(2x)}^{2}}{{(-1)}^{2}}+{}^{4}{{C}_{3}}{{(2x)}^{1}}{{(-1)}^{3}}+{}^{4}{{C}_{4}}{{(2x)}^{0}}{{(-1)}^{4}}$
$\Rightarrow {{(2x-1)}^{4}}={}^{4}{{C}_{0}}(16{{x}^{4}})-{}^{4}{{C}_{1}}(8{{x}^{3}})+{}^{4}{{C}_{2}}(4{{x}^{2}})-{}^{4}{{C}_{3}}(2x)+{}^{4}{{C}_{4}}(1)$ ….. (i)
Now, we shall use the formula ${}^{n}{{C}_{i}}=\dfrac{n!}{i!(n-i)!}$
Therefore, equation (i) can be simplified to
${{(2x-1)}^{4}}=\dfrac{4!}{0!(4-0)!}(16{{x}^{4}})-\dfrac{4!}{1!(4-1)!}(8{{x}^{3}})+\dfrac{4!}{2!(4-2)!}(4{{x}^{2}})-\dfrac{4!}{3!(4-3)!}(2x)+\dfrac{4!}{4!(4-4)!}(1)$
With this, we get that
${{(2x-1)}^{4}}=(1)(16{{x}^{4}})-\dfrac{4!}{1!3!}(8{{x}^{3}})+\dfrac{4!}{2!2!}(4{{x}^{2}})-\dfrac{4!}{3!1!}(2x)+\dfrac{4!}{4!0!}(1)$
$\Rightarrow {{(2x-1)}^{4}}=16{{x}^{4}}-(4)8{{x}^{3}}+\left( \dfrac{4\times 3}{2} \right)(4{{x}^{2}})-(4)(2x)+(1)$
Finally,
$\therefore {{(2x-1)}^{4}}=16{{x}^{4}}-32{{x}^{3}}+24{{x}^{2}}-8x+1$
Hence, we found the expansion of the given expression with the help of binomial theorem.
Note:when we expand an expression with the help of binomial theorem, the series consists of (n+1) terms. If you do not use the formula of combination ${}^{n}{{C}_{i}}$, then you can make use of Pascal's triangle and select the row that has (n+1) elements (numbers).
Formula used:
${{(x+y)}^{n}}=\sum\limits_{i=0}^{n}{{}^{n}{{C}_{i}}{{x}^{n-i}}{{y}^{i}}}$,
where x and y are real numbers and n is a positive integer (a natural number).
${}^{n}{{C}_{i}}=\dfrac{n!}{i!(n-i)!}$
Complete step by step answer:
Let us first understand what is the binomial theorem.Binomial theorem is a method used to expand a binomial term that is raised to some power of positive integer. According to binomial theorem, the nth power of the sum of two numbers (say a and b) can be expressed (expanded) as the sum or series of (n+1) terms, provided that ‘n’ is a positive integer.
Suppose we have an expression ${{(x+y)}^{n}}$, where x and y are real numbers and n is a positive integer (a natural number).
Then, the binomial expansion of the above expression is given as
${{(x+y)}^{n}}=\sum\limits_{i=0}^{n}{{}^{n}{{C}_{i}}{{x}^{n-i}}{{y}^{i}}}$
Here, i is a natural number taking values from 0 to n.
When we expand the summation we get that ${{(x+y)}^{n}}={}^{n}{{C}_{0}}{{x}^{n-0}}{{y}^{0}}+{}^{n}{{C}_{1}}{{x}^{n-1}}{{y}^{1}}+{}^{n}{{C}_{2}}{{x}^{n-2}}{{y}^{2}}+.......+{}^{n}{{C}_{n-1}}{{x}^{n-(n-1)}}{{y}^{n-1}}+{}^{n}{{C}_{n}}{{x}^{n-n}}{{y}^{n}}$.
In the given question, $n=4$,
Therefore, the given expression can expanded, with the help of binomial theorem as
${{(2x-1)}^{4}}={}^{4}{{C}_{0}}{{(2x)}^{4-0}}{{(-1)}^{0}}+{}^{4}{{C}_{1}}{{(2x)}^{4-1}}{{(-1)}^{1}}+{}^{4}{{C}_{2}}{{(2x)}^{4-2}}{{(-1)}^{2}}+{}^{4}{{C}_{3}}{{(2x)}^{4-3}}{{(-1)}^{3}}+{}^{4}{{C}_{4}}{{(2x)}^{4-4}}{{(-1)}^{4}}$
This equation can be further simplified to
${{(2x-1)}^{4}}={}^{4}{{C}_{0}}{{(2x)}^{4}}{{(-1)}^{0}}+{}^{4}{{C}_{1}}{{(2x)}^{3}}{{(-1)}^{1}}+{}^{4}{{C}_{2}}{{(2x)}^{2}}{{(-1)}^{2}}+{}^{4}{{C}_{3}}{{(2x)}^{1}}{{(-1)}^{3}}+{}^{4}{{C}_{4}}{{(2x)}^{0}}{{(-1)}^{4}}$
$\Rightarrow {{(2x-1)}^{4}}={}^{4}{{C}_{0}}(16{{x}^{4}})-{}^{4}{{C}_{1}}(8{{x}^{3}})+{}^{4}{{C}_{2}}(4{{x}^{2}})-{}^{4}{{C}_{3}}(2x)+{}^{4}{{C}_{4}}(1)$ ….. (i)
Now, we shall use the formula ${}^{n}{{C}_{i}}=\dfrac{n!}{i!(n-i)!}$
Therefore, equation (i) can be simplified to
${{(2x-1)}^{4}}=\dfrac{4!}{0!(4-0)!}(16{{x}^{4}})-\dfrac{4!}{1!(4-1)!}(8{{x}^{3}})+\dfrac{4!}{2!(4-2)!}(4{{x}^{2}})-\dfrac{4!}{3!(4-3)!}(2x)+\dfrac{4!}{4!(4-4)!}(1)$
With this, we get that
${{(2x-1)}^{4}}=(1)(16{{x}^{4}})-\dfrac{4!}{1!3!}(8{{x}^{3}})+\dfrac{4!}{2!2!}(4{{x}^{2}})-\dfrac{4!}{3!1!}(2x)+\dfrac{4!}{4!0!}(1)$
$\Rightarrow {{(2x-1)}^{4}}=16{{x}^{4}}-(4)8{{x}^{3}}+\left( \dfrac{4\times 3}{2} \right)(4{{x}^{2}})-(4)(2x)+(1)$
Finally,
$\therefore {{(2x-1)}^{4}}=16{{x}^{4}}-32{{x}^{3}}+24{{x}^{2}}-8x+1$
Hence, we found the expansion of the given expression with the help of binomial theorem.
Note:when we expand an expression with the help of binomial theorem, the series consists of (n+1) terms. If you do not use the formula of combination ${}^{n}{{C}_{i}}$, then you can make use of Pascal's triangle and select the row that has (n+1) elements (numbers).
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE