
How do you use the epsilon delta definition to find the limit of \[\left( {\dfrac{{{x^2} + x - 6}}{{x - 2}}} \right)\]as \[x\] approaches \[2\]\[?\]
Answer
427.2k+ views
Hint: Here we have to check that the given function is defined or not at \[x = 2\]. If it is defined, then by the definition epsilon delta finds the relationship between epsilon and delta to prove the limit of the given function as \[x\]approaches to \[2\] it exists and is unique.
Complete step by step solution:
The epsilon-delta definition of limits says that the limit of \[f(x)\]at \[x = c\]is \[L\] if for any \[\varepsilon > 0\] there exists a \[\delta > 0\] such that if the distance of \[x\] from \[c\] is less than \[\delta \], then the distance of f(x) from \[L\] is less than \[\varepsilon \].
Graphical representation of the epsilon-delta definition:
Let the given function say \[f(x) = \left( {\dfrac{{{x^2} + x - 6}}{{x - 2}}} \right)\] and \[L\] be the limit of the given function.
At \[x = 2\], the given function approaches infinity. So, rewriting the given above function, we get \[f(x) = x + 3\]. Hence at \[x = 2\],\[f(2) = 5\].
\[ \Rightarrow \] \[\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{{x^2} + x - 6}}{{x - 2}}} \right) = 5\]
We prove by the epsilon delta definition, for any \[\varepsilon > 0\] there exists a \[\delta > 0\] such that
If \[\left| {x - 2} \right| < \delta \] \[ \Rightarrow \] \[\left| {f(x) - L} \right| < \varepsilon \]
\[ \Rightarrow \left| {x + 3 - 5} \right| < \varepsilon \]
On simplification,
\[ \Rightarrow \left| {x + 2} \right| < \varepsilon \]
\[ \Rightarrow \left| {x + 2} \right| < \delta \]
From the above two equations, we can say
\[ \delta = \varepsilon \]
Hence the limit of \[\left( {\dfrac{{{x^2} + x - 6}}{{x - 2}}} \right)\]as \[x\] approaches \[2\] is \[5\].
Note:
Note that If the limit of the given function at the given point exists then the limit is unique and finite. A function is continuous if you can draw its graph without lifting the pencil. Every differentiable function is continuous but converse is not true.
Complete step by step solution:
The epsilon-delta definition of limits says that the limit of \[f(x)\]at \[x = c\]is \[L\] if for any \[\varepsilon > 0\] there exists a \[\delta > 0\] such that if the distance of \[x\] from \[c\] is less than \[\delta \], then the distance of f(x) from \[L\] is less than \[\varepsilon \].
Graphical representation of the epsilon-delta definition:

Let the given function say \[f(x) = \left( {\dfrac{{{x^2} + x - 6}}{{x - 2}}} \right)\] and \[L\] be the limit of the given function.
At \[x = 2\], the given function approaches infinity. So, rewriting the given above function, we get \[f(x) = x + 3\]. Hence at \[x = 2\],\[f(2) = 5\].
\[ \Rightarrow \] \[\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{{x^2} + x - 6}}{{x - 2}}} \right) = 5\]
We prove by the epsilon delta definition, for any \[\varepsilon > 0\] there exists a \[\delta > 0\] such that
If \[\left| {x - 2} \right| < \delta \] \[ \Rightarrow \] \[\left| {f(x) - L} \right| < \varepsilon \]
\[ \Rightarrow \left| {x + 3 - 5} \right| < \varepsilon \]
On simplification,
\[ \Rightarrow \left| {x + 2} \right| < \varepsilon \]
\[ \Rightarrow \left| {x + 2} \right| < \delta \]
From the above two equations, we can say
\[ \delta = \varepsilon \]
Hence the limit of \[\left( {\dfrac{{{x^2} + x - 6}}{{x - 2}}} \right)\]as \[x\] approaches \[2\] is \[5\].
Note:
Note that If the limit of the given function at the given point exists then the limit is unique and finite. A function is continuous if you can draw its graph without lifting the pencil. Every differentiable function is continuous but converse is not true.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
