Answer
Verified
405.9k+ views
Hint: Here we have to check that the given function is defined or not at \[x = 2\]. If it is defined, then by the definition epsilon delta finds the relationship between epsilon and delta to prove the limit of the given function as \[x\]approaches to \[2\] it exists and is unique.
Complete step by step solution:
The epsilon-delta definition of limits says that the limit of \[f(x)\]at \[x = c\]is \[L\] if for any \[\varepsilon > 0\] there exists a \[\delta > 0\] such that if the distance of \[x\] from \[c\] is less than \[\delta \], then the distance of f(x) from \[L\] is less than \[\varepsilon \].
Graphical representation of the epsilon-delta definition:
Let the given function say \[f(x) = \left( {\dfrac{{{x^2} + x - 6}}{{x - 2}}} \right)\] and \[L\] be the limit of the given function.
At \[x = 2\], the given function approaches infinity. So, rewriting the given above function, we get \[f(x) = x + 3\]. Hence at \[x = 2\],\[f(2) = 5\].
\[ \Rightarrow \] \[\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{{x^2} + x - 6}}{{x - 2}}} \right) = 5\]
We prove by the epsilon delta definition, for any \[\varepsilon > 0\] there exists a \[\delta > 0\] such that
If \[\left| {x - 2} \right| < \delta \] \[ \Rightarrow \] \[\left| {f(x) - L} \right| < \varepsilon \]
\[ \Rightarrow \left| {x + 3 - 5} \right| < \varepsilon \]
On simplification,
\[ \Rightarrow \left| {x + 2} \right| < \varepsilon \]
\[ \Rightarrow \left| {x + 2} \right| < \delta \]
From the above two equations, we can say
\[ \delta = \varepsilon \]
Hence the limit of \[\left( {\dfrac{{{x^2} + x - 6}}{{x - 2}}} \right)\]as \[x\] approaches \[2\] is \[5\].
Note:
Note that If the limit of the given function at the given point exists then the limit is unique and finite. A function is continuous if you can draw its graph without lifting the pencil. Every differentiable function is continuous but converse is not true.
Complete step by step solution:
The epsilon-delta definition of limits says that the limit of \[f(x)\]at \[x = c\]is \[L\] if for any \[\varepsilon > 0\] there exists a \[\delta > 0\] such that if the distance of \[x\] from \[c\] is less than \[\delta \], then the distance of f(x) from \[L\] is less than \[\varepsilon \].
Graphical representation of the epsilon-delta definition:
Let the given function say \[f(x) = \left( {\dfrac{{{x^2} + x - 6}}{{x - 2}}} \right)\] and \[L\] be the limit of the given function.
At \[x = 2\], the given function approaches infinity. So, rewriting the given above function, we get \[f(x) = x + 3\]. Hence at \[x = 2\],\[f(2) = 5\].
\[ \Rightarrow \] \[\mathop {\lim }\limits_{x \to 2} \left( {\dfrac{{{x^2} + x - 6}}{{x - 2}}} \right) = 5\]
We prove by the epsilon delta definition, for any \[\varepsilon > 0\] there exists a \[\delta > 0\] such that
If \[\left| {x - 2} \right| < \delta \] \[ \Rightarrow \] \[\left| {f(x) - L} \right| < \varepsilon \]
\[ \Rightarrow \left| {x + 3 - 5} \right| < \varepsilon \]
On simplification,
\[ \Rightarrow \left| {x + 2} \right| < \varepsilon \]
\[ \Rightarrow \left| {x + 2} \right| < \delta \]
From the above two equations, we can say
\[ \delta = \varepsilon \]
Hence the limit of \[\left( {\dfrac{{{x^2} + x - 6}}{{x - 2}}} \right)\]as \[x\] approaches \[2\] is \[5\].
Note:
Note that If the limit of the given function at the given point exists then the limit is unique and finite. A function is continuous if you can draw its graph without lifting the pencil. Every differentiable function is continuous but converse is not true.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Explain the Basics of Computer and Number System?
Class 11 Question and Answer - Your Ultimate Solutions Guide
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Who was the Governor general of India at the time of class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE
10 examples of friction in our daily life