Answer
Verified
357.3k+ views
Hint: The given question requires us to find the derivative of a function using the first principle of differentiation. The first principle of differentiation helps us evaluate the derivative of a function using limits. Calculating the derivative of a function using the first principle of differentiation may be a tedious task. We may employ identities and tricks to calculate the limits and evaluate the required derivative.
Complete step by step solution:
We have to evaluate the derivative of $y =f(x) = \sqrt {\sin x} $ using the first principle of differentiation.
According to the first principle of differentiation, the derivative of a function can be evaluated by calculating the limit \[f'\left( x \right){\text{ = }}\mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f{\text{(x)}}}}{h}\] .
So, the derivative of the function $y = \sqrt {\sin x} $ can be calculated by the first rule of differentiation as:
$f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sqrt {\sin \left( {x + h} \right)} - \sqrt {\sin x} }}{h}} \right]$
Expanding the sine of a compound angle using the compound angle formula for sine as $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$, we get,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sqrt {\sin x\cosh + \cos x\sinh } - \sqrt {\sin x} }}{h}} \right]$
Multiplying and dividing the rational expression by $\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)$, we get,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sqrt {\sin x\cosh + \cos x\sinh } - \sqrt {\sin x} }}{h}} \right] \times \dfrac{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}$
Using the algebraic identity ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$, we get,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sin x\cosh + \cos x\sinh - \sin x}}{{h\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Taking the common terms outside the bracket, we get,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sin x\left( {\cosh - 1} \right) + \cos x\sinh }}{{h\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Separating out the denominator, we get,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\dfrac{{\sin x\left( {\cosh - 1} \right)}}{h} + \dfrac{{\cos x\sinh }}{h}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Using the half angle formula for cosine in numerator,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\dfrac{{\sin x\left( {1 - 2{{\sin }^2}\dfrac{h}{2} - 1} \right)}}{h} + \dfrac{{\cos x\sinh }}{h}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Cancelling the like terms with opposite signs,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{ - 2\sin x\dfrac{{\left( {{{\sin }^2}\dfrac{h}{2}} \right)}}{h} + \cos x\left( {\dfrac{{\sinh }}{h}} \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Separating out the limits for each expression, we get,
$ \Rightarrow f'(x){\text{ = }}\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{ - 2\sin x\dfrac{{\left( {{{\sin }^2}\dfrac{h}{2}} \right)}}{h}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}} + \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos x\left( {\dfrac{{\sinh }}{h}} \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Using the standard limit result $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$, we get,
$ \Rightarrow f'(x){\text{ = }}\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{ - 2\sin x\dfrac{{\left( {{{\sin }^2}\dfrac{h}{2}} \right)}}{h}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}} + \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos x\left( 1 \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Doing some modifications in the first term,
\[ \Rightarrow f'(x){\text{ = }}\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{ - 2\sin x\dfrac{{\left( {{{\sin }^2}\dfrac{h}{2}} \right)}}{{\dfrac{4}{h} \times {{\left( {\dfrac{h}{2}} \right)}^2}}}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}} + \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos x\left( 1 \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]\]
$ \Rightarrow f'(x){\text{ = }}\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{ - 2\sin x \times \dfrac{h}{4}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}} + \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos x\left( 1 \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
$ \Rightarrow f'(x){\text{ = }}\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{ - 2h\sin x}}{{4\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}} + \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos x}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Putting in the value of limits, we get,
$ \Rightarrow f'(x){\text{ = }}\left[ {\dfrac{{ - 2\left( 0 \right)\sin x}}{{4\left( {\sqrt {\sin x\cos 0 + \cos x\sin 0} + \sqrt {\sin x} } \right)}} + \dfrac{{\cos x}}{{\left( {\sqrt {\sin x\cos 0 + \cos x\sin 0} + \sqrt {\sin x} } \right)}}} \right]$
Simplifying the expression,
$ \Rightarrow f'(x){\text{ = }}\left[ {0 + \dfrac{{\cos x}}{{\left( {\sqrt {\sin x\left( 1 \right) + \cos x\left( 0 \right)} + \sqrt {\sin x} } \right)}}} \right]$
$ \Rightarrow f'(x){\text{ = }}\dfrac{{\cos x}}{{2\sqrt {\sin x} }}$
Therefore, the derivative of the function $y = \sqrt {\sin x} $ is $f'(x){\text{ = }}\dfrac{{\cos x}}{{2\sqrt {\sin x} }}$.
Note:
The derivative of the given function can also be calculated by using the chain rule and power rule of differentiation. According to the power rule of differentiation, the derivative of ${x^n}$ is $n{x^{n - 1}}$ .
So, going by the chain rule of differentiation, the derivative of $y = \sqrt {\sin x} $ is $\dfrac{{dy}}{{dx}} = \dfrac{1}{{2\sqrt {\sin x} }} \times \left( {\cos x} \right)$. So, the derivative of the given function is $f'(x){\text{ = }}\dfrac{{\cos x}}{{2\sqrt {\sin x} }}$ .
Complete step by step solution:
We have to evaluate the derivative of $y =f(x) = \sqrt {\sin x} $ using the first principle of differentiation.
According to the first principle of differentiation, the derivative of a function can be evaluated by calculating the limit \[f'\left( x \right){\text{ = }}\mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f{\text{(x)}}}}{h}\] .
So, the derivative of the function $y = \sqrt {\sin x} $ can be calculated by the first rule of differentiation as:
$f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sqrt {\sin \left( {x + h} \right)} - \sqrt {\sin x} }}{h}} \right]$
Expanding the sine of a compound angle using the compound angle formula for sine as $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$, we get,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sqrt {\sin x\cosh + \cos x\sinh } - \sqrt {\sin x} }}{h}} \right]$
Multiplying and dividing the rational expression by $\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)$, we get,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sqrt {\sin x\cosh + \cos x\sinh } - \sqrt {\sin x} }}{h}} \right] \times \dfrac{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}$
Using the algebraic identity ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$, we get,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sin x\cosh + \cos x\sinh - \sin x}}{{h\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Taking the common terms outside the bracket, we get,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sin x\left( {\cosh - 1} \right) + \cos x\sinh }}{{h\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Separating out the denominator, we get,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\dfrac{{\sin x\left( {\cosh - 1} \right)}}{h} + \dfrac{{\cos x\sinh }}{h}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Using the half angle formula for cosine in numerator,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\dfrac{{\sin x\left( {1 - 2{{\sin }^2}\dfrac{h}{2} - 1} \right)}}{h} + \dfrac{{\cos x\sinh }}{h}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Cancelling the like terms with opposite signs,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{ - 2\sin x\dfrac{{\left( {{{\sin }^2}\dfrac{h}{2}} \right)}}{h} + \cos x\left( {\dfrac{{\sinh }}{h}} \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Separating out the limits for each expression, we get,
$ \Rightarrow f'(x){\text{ = }}\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{ - 2\sin x\dfrac{{\left( {{{\sin }^2}\dfrac{h}{2}} \right)}}{h}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}} + \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos x\left( {\dfrac{{\sinh }}{h}} \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Using the standard limit result $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$, we get,
$ \Rightarrow f'(x){\text{ = }}\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{ - 2\sin x\dfrac{{\left( {{{\sin }^2}\dfrac{h}{2}} \right)}}{h}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}} + \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos x\left( 1 \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Doing some modifications in the first term,
\[ \Rightarrow f'(x){\text{ = }}\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{ - 2\sin x\dfrac{{\left( {{{\sin }^2}\dfrac{h}{2}} \right)}}{{\dfrac{4}{h} \times {{\left( {\dfrac{h}{2}} \right)}^2}}}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}} + \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos x\left( 1 \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]\]
$ \Rightarrow f'(x){\text{ = }}\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{ - 2\sin x \times \dfrac{h}{4}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}} + \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos x\left( 1 \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
$ \Rightarrow f'(x){\text{ = }}\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{ - 2h\sin x}}{{4\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}} + \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos x}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Putting in the value of limits, we get,
$ \Rightarrow f'(x){\text{ = }}\left[ {\dfrac{{ - 2\left( 0 \right)\sin x}}{{4\left( {\sqrt {\sin x\cos 0 + \cos x\sin 0} + \sqrt {\sin x} } \right)}} + \dfrac{{\cos x}}{{\left( {\sqrt {\sin x\cos 0 + \cos x\sin 0} + \sqrt {\sin x} } \right)}}} \right]$
Simplifying the expression,
$ \Rightarrow f'(x){\text{ = }}\left[ {0 + \dfrac{{\cos x}}{{\left( {\sqrt {\sin x\left( 1 \right) + \cos x\left( 0 \right)} + \sqrt {\sin x} } \right)}}} \right]$
$ \Rightarrow f'(x){\text{ = }}\dfrac{{\cos x}}{{2\sqrt {\sin x} }}$
Therefore, the derivative of the function $y = \sqrt {\sin x} $ is $f'(x){\text{ = }}\dfrac{{\cos x}}{{2\sqrt {\sin x} }}$.
Note:
The derivative of the given function can also be calculated by using the chain rule and power rule of differentiation. According to the power rule of differentiation, the derivative of ${x^n}$ is $n{x^{n - 1}}$ .
So, going by the chain rule of differentiation, the derivative of $y = \sqrt {\sin x} $ is $\dfrac{{dy}}{{dx}} = \dfrac{1}{{2\sqrt {\sin x} }} \times \left( {\cos x} \right)$. So, the derivative of the given function is $f'(x){\text{ = }}\dfrac{{\cos x}}{{2\sqrt {\sin x} }}$ .
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
What is BLO What is the full form of BLO class 8 social science CBSE