Answer
Verified
368.1k+ views
Hint: The given question requires us to find the derivative of a function using the first principle of differentiation. The first principle of differentiation helps us evaluate the derivative of a function using limits. Calculating the derivative of a function using the first principle of differentiation may be a tedious task. We may employ identities and tricks to calculate the limits and evaluate the required derivative.
Complete step by step solution:
We have to evaluate the derivative of $y =f(x) = \sqrt {\sin x} $ using the first principle of differentiation.
According to the first principle of differentiation, the derivative of a function can be evaluated by calculating the limit \[f'\left( x \right){\text{ = }}\mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f{\text{(x)}}}}{h}\] .
So, the derivative of the function $y = \sqrt {\sin x} $ can be calculated by the first rule of differentiation as:
$f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sqrt {\sin \left( {x + h} \right)} - \sqrt {\sin x} }}{h}} \right]$
Expanding the sine of a compound angle using the compound angle formula for sine as $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$, we get,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sqrt {\sin x\cosh + \cos x\sinh } - \sqrt {\sin x} }}{h}} \right]$
Multiplying and dividing the rational expression by $\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)$, we get,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sqrt {\sin x\cosh + \cos x\sinh } - \sqrt {\sin x} }}{h}} \right] \times \dfrac{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}$
Using the algebraic identity ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$, we get,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sin x\cosh + \cos x\sinh - \sin x}}{{h\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Taking the common terms outside the bracket, we get,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sin x\left( {\cosh - 1} \right) + \cos x\sinh }}{{h\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Separating out the denominator, we get,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\dfrac{{\sin x\left( {\cosh - 1} \right)}}{h} + \dfrac{{\cos x\sinh }}{h}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Using the half angle formula for cosine in numerator,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\dfrac{{\sin x\left( {1 - 2{{\sin }^2}\dfrac{h}{2} - 1} \right)}}{h} + \dfrac{{\cos x\sinh }}{h}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Cancelling the like terms with opposite signs,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{ - 2\sin x\dfrac{{\left( {{{\sin }^2}\dfrac{h}{2}} \right)}}{h} + \cos x\left( {\dfrac{{\sinh }}{h}} \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Separating out the limits for each expression, we get,
$ \Rightarrow f'(x){\text{ = }}\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{ - 2\sin x\dfrac{{\left( {{{\sin }^2}\dfrac{h}{2}} \right)}}{h}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}} + \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos x\left( {\dfrac{{\sinh }}{h}} \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Using the standard limit result $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$, we get,
$ \Rightarrow f'(x){\text{ = }}\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{ - 2\sin x\dfrac{{\left( {{{\sin }^2}\dfrac{h}{2}} \right)}}{h}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}} + \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos x\left( 1 \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Doing some modifications in the first term,
\[ \Rightarrow f'(x){\text{ = }}\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{ - 2\sin x\dfrac{{\left( {{{\sin }^2}\dfrac{h}{2}} \right)}}{{\dfrac{4}{h} \times {{\left( {\dfrac{h}{2}} \right)}^2}}}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}} + \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos x\left( 1 \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]\]
$ \Rightarrow f'(x){\text{ = }}\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{ - 2\sin x \times \dfrac{h}{4}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}} + \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos x\left( 1 \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
$ \Rightarrow f'(x){\text{ = }}\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{ - 2h\sin x}}{{4\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}} + \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos x}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Putting in the value of limits, we get,
$ \Rightarrow f'(x){\text{ = }}\left[ {\dfrac{{ - 2\left( 0 \right)\sin x}}{{4\left( {\sqrt {\sin x\cos 0 + \cos x\sin 0} + \sqrt {\sin x} } \right)}} + \dfrac{{\cos x}}{{\left( {\sqrt {\sin x\cos 0 + \cos x\sin 0} + \sqrt {\sin x} } \right)}}} \right]$
Simplifying the expression,
$ \Rightarrow f'(x){\text{ = }}\left[ {0 + \dfrac{{\cos x}}{{\left( {\sqrt {\sin x\left( 1 \right) + \cos x\left( 0 \right)} + \sqrt {\sin x} } \right)}}} \right]$
$ \Rightarrow f'(x){\text{ = }}\dfrac{{\cos x}}{{2\sqrt {\sin x} }}$
Therefore, the derivative of the function $y = \sqrt {\sin x} $ is $f'(x){\text{ = }}\dfrac{{\cos x}}{{2\sqrt {\sin x} }}$.
Note:
The derivative of the given function can also be calculated by using the chain rule and power rule of differentiation. According to the power rule of differentiation, the derivative of ${x^n}$ is $n{x^{n - 1}}$ .
So, going by the chain rule of differentiation, the derivative of $y = \sqrt {\sin x} $ is $\dfrac{{dy}}{{dx}} = \dfrac{1}{{2\sqrt {\sin x} }} \times \left( {\cos x} \right)$. So, the derivative of the given function is $f'(x){\text{ = }}\dfrac{{\cos x}}{{2\sqrt {\sin x} }}$ .
Complete step by step solution:
We have to evaluate the derivative of $y =f(x) = \sqrt {\sin x} $ using the first principle of differentiation.
According to the first principle of differentiation, the derivative of a function can be evaluated by calculating the limit \[f'\left( x \right){\text{ = }}\mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f{\text{(x)}}}}{h}\] .
So, the derivative of the function $y = \sqrt {\sin x} $ can be calculated by the first rule of differentiation as:
$f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sqrt {\sin \left( {x + h} \right)} - \sqrt {\sin x} }}{h}} \right]$
Expanding the sine of a compound angle using the compound angle formula for sine as $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$, we get,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sqrt {\sin x\cosh + \cos x\sinh } - \sqrt {\sin x} }}{h}} \right]$
Multiplying and dividing the rational expression by $\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)$, we get,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sqrt {\sin x\cosh + \cos x\sinh } - \sqrt {\sin x} }}{h}} \right] \times \dfrac{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}$
Using the algebraic identity ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$, we get,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sin x\cosh + \cos x\sinh - \sin x}}{{h\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Taking the common terms outside the bracket, we get,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sin x\left( {\cosh - 1} \right) + \cos x\sinh }}{{h\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Separating out the denominator, we get,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\dfrac{{\sin x\left( {\cosh - 1} \right)}}{h} + \dfrac{{\cos x\sinh }}{h}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Using the half angle formula for cosine in numerator,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\dfrac{{\sin x\left( {1 - 2{{\sin }^2}\dfrac{h}{2} - 1} \right)}}{h} + \dfrac{{\cos x\sinh }}{h}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Cancelling the like terms with opposite signs,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{ - 2\sin x\dfrac{{\left( {{{\sin }^2}\dfrac{h}{2}} \right)}}{h} + \cos x\left( {\dfrac{{\sinh }}{h}} \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Separating out the limits for each expression, we get,
$ \Rightarrow f'(x){\text{ = }}\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{ - 2\sin x\dfrac{{\left( {{{\sin }^2}\dfrac{h}{2}} \right)}}{h}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}} + \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos x\left( {\dfrac{{\sinh }}{h}} \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Using the standard limit result $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$, we get,
$ \Rightarrow f'(x){\text{ = }}\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{ - 2\sin x\dfrac{{\left( {{{\sin }^2}\dfrac{h}{2}} \right)}}{h}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}} + \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos x\left( 1 \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Doing some modifications in the first term,
\[ \Rightarrow f'(x){\text{ = }}\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{ - 2\sin x\dfrac{{\left( {{{\sin }^2}\dfrac{h}{2}} \right)}}{{\dfrac{4}{h} \times {{\left( {\dfrac{h}{2}} \right)}^2}}}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}} + \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos x\left( 1 \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]\]
$ \Rightarrow f'(x){\text{ = }}\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{ - 2\sin x \times \dfrac{h}{4}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}} + \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos x\left( 1 \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
$ \Rightarrow f'(x){\text{ = }}\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{ - 2h\sin x}}{{4\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}} + \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos x}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Putting in the value of limits, we get,
$ \Rightarrow f'(x){\text{ = }}\left[ {\dfrac{{ - 2\left( 0 \right)\sin x}}{{4\left( {\sqrt {\sin x\cos 0 + \cos x\sin 0} + \sqrt {\sin x} } \right)}} + \dfrac{{\cos x}}{{\left( {\sqrt {\sin x\cos 0 + \cos x\sin 0} + \sqrt {\sin x} } \right)}}} \right]$
Simplifying the expression,
$ \Rightarrow f'(x){\text{ = }}\left[ {0 + \dfrac{{\cos x}}{{\left( {\sqrt {\sin x\left( 1 \right) + \cos x\left( 0 \right)} + \sqrt {\sin x} } \right)}}} \right]$
$ \Rightarrow f'(x){\text{ = }}\dfrac{{\cos x}}{{2\sqrt {\sin x} }}$
Therefore, the derivative of the function $y = \sqrt {\sin x} $ is $f'(x){\text{ = }}\dfrac{{\cos x}}{{2\sqrt {\sin x} }}$.
Note:
The derivative of the given function can also be calculated by using the chain rule and power rule of differentiation. According to the power rule of differentiation, the derivative of ${x^n}$ is $n{x^{n - 1}}$ .
So, going by the chain rule of differentiation, the derivative of $y = \sqrt {\sin x} $ is $\dfrac{{dy}}{{dx}} = \dfrac{1}{{2\sqrt {\sin x} }} \times \left( {\cos x} \right)$. So, the derivative of the given function is $f'(x){\text{ = }}\dfrac{{\cos x}}{{2\sqrt {\sin x} }}$ .
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers