How do you use the half angle formula to find $\sin {112.5^ \circ }$?
Answer
Verified
443.4k+ views
Hint: In this question we have to find the value of $\sin {112.5^ \circ }$. To find the value of $\sin {112.5^ \circ }$ we use trigonometric identity $\cos 2\theta = 1 - 2{\sin ^2}\theta $ and modify it to find required value$ \sin {112.5^ \circ }$ . Also use the fact that ${225^ \circ }$ can be written as ${225^ \circ } = 2({112.5^ \circ })$. Also we need to know in which quadrant each trigonometric function is positive and in which they are negative.
Complete step by step solution:
Let us try to solve this question in which we have to find the value of $\sin {112.5^ \circ }$. To solve this question we will first get half angle formula of cosine function from $\cos 2\theta $ and after which we will put the value ${112.5^ \circ }$in the formula to get the exact value of $\sin {112.5^ \circ }$ using half angle formula.
So here is the formula of $\cos 2\theta $
$\cos 2\theta = 1 - 2{\sin ^2}\theta $
And we know that ${225^ \circ }$ can be written as ${225^ \circ } = 2({112.5^ \circ })$
So we will assume that $2\theta = {225^ \circ }$ which means that value of $\theta = \dfrac{{{{225}^
\circ }}}{2}$
Implies that $\theta = {112.5^ \circ }$
Putting value of $\theta$ in the formula of $\cos 2\theta $ we get,
$\cos 2({112.5^ \circ }) = 1 - 2{\sin ^2}({112.5^ \circ })$
Now taking $2{\sin ^2}({112.5^ \circ })$ to LHS and $\cos 2({112.5^ \circ })$ to RHS we will get
$2{\sin ^2}({112.5^ \circ }) = 1 - \cos 2({112.5^ \circ })$
$2{\sin ^2}({112.5^ \circ }) = 1 - \cos {225^ \circ }$
Putting value of$\cos {225^ \circ } = - \dfrac{1}{{\sqrt 2 }}$, because $\cos ({180^ \circ } + {\phi ^ \circ })
= - \cos ({\phi ^ \circ })$ and$\cos {225^ \circ } = \cos ({180^ \circ } + {45^ \circ })$ in the above equation we get
\[
2{\sin ^2}({112.5^ \circ }) = \dfrac{1}{{\sqrt 2 }} + 1 \\
2{\sin ^2}({112.5^ \circ }) = \dfrac{{\sqrt 2 + 1}}{{\sqrt 2 }} \\
\\
\]
\[
{\sin ^2}({112.5^ \circ }) = \dfrac{{\sqrt 2 + 1}}{{2\sqrt 2 }} \\
\sin {112.5^ \circ } = \pm \sqrt {\dfrac{{\sqrt 2 + 1}}{{2\sqrt 2 }}} \\
\]
Now we know that the value of $\sin {112.5^ \circ }$ will be positive because ${112.5^ \circ }$ lies in the second quadrant and the value of the sine function in the first and second quadrant is positive.
Hence the value of $\sin {112.5^ \circ }$ is equal to
$\sin {112.5^ \circ } = \sqrt {\dfrac{{\sqrt 2 + 1}}{{2\sqrt 2 }}} $
So the value of $\sin {112.5^ \circ }$ using the half angle formula is equal to $\sqrt {\dfrac{{\sqrt 2 + 1}}{{2\sqrt 2 }}} $.
Note: While solving this type of question you need to be careful about the sign of final value. For this you have to check in which quadrant trigonometric function value will be positive and in which it is negative. Knowing trigonometric formulas is a must to solve this kind of problem.
Complete step by step solution:
Let us try to solve this question in which we have to find the value of $\sin {112.5^ \circ }$. To solve this question we will first get half angle formula of cosine function from $\cos 2\theta $ and after which we will put the value ${112.5^ \circ }$in the formula to get the exact value of $\sin {112.5^ \circ }$ using half angle formula.
So here is the formula of $\cos 2\theta $
$\cos 2\theta = 1 - 2{\sin ^2}\theta $
And we know that ${225^ \circ }$ can be written as ${225^ \circ } = 2({112.5^ \circ })$
So we will assume that $2\theta = {225^ \circ }$ which means that value of $\theta = \dfrac{{{{225}^
\circ }}}{2}$
Implies that $\theta = {112.5^ \circ }$
Putting value of $\theta$ in the formula of $\cos 2\theta $ we get,
$\cos 2({112.5^ \circ }) = 1 - 2{\sin ^2}({112.5^ \circ })$
Now taking $2{\sin ^2}({112.5^ \circ })$ to LHS and $\cos 2({112.5^ \circ })$ to RHS we will get
$2{\sin ^2}({112.5^ \circ }) = 1 - \cos 2({112.5^ \circ })$
$2{\sin ^2}({112.5^ \circ }) = 1 - \cos {225^ \circ }$
Putting value of$\cos {225^ \circ } = - \dfrac{1}{{\sqrt 2 }}$, because $\cos ({180^ \circ } + {\phi ^ \circ })
= - \cos ({\phi ^ \circ })$ and$\cos {225^ \circ } = \cos ({180^ \circ } + {45^ \circ })$ in the above equation we get
\[
2{\sin ^2}({112.5^ \circ }) = \dfrac{1}{{\sqrt 2 }} + 1 \\
2{\sin ^2}({112.5^ \circ }) = \dfrac{{\sqrt 2 + 1}}{{\sqrt 2 }} \\
\\
\]
\[
{\sin ^2}({112.5^ \circ }) = \dfrac{{\sqrt 2 + 1}}{{2\sqrt 2 }} \\
\sin {112.5^ \circ } = \pm \sqrt {\dfrac{{\sqrt 2 + 1}}{{2\sqrt 2 }}} \\
\]
Now we know that the value of $\sin {112.5^ \circ }$ will be positive because ${112.5^ \circ }$ lies in the second quadrant and the value of the sine function in the first and second quadrant is positive.
Hence the value of $\sin {112.5^ \circ }$ is equal to
$\sin {112.5^ \circ } = \sqrt {\dfrac{{\sqrt 2 + 1}}{{2\sqrt 2 }}} $
So the value of $\sin {112.5^ \circ }$ using the half angle formula is equal to $\sqrt {\dfrac{{\sqrt 2 + 1}}{{2\sqrt 2 }}} $.
Note: While solving this type of question you need to be careful about the sign of final value. For this you have to check in which quadrant trigonometric function value will be positive and in which it is negative. Knowing trigonometric formulas is a must to solve this kind of problem.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE