Using elementary transformation, find the inverse of the matrix $\left[ {\begin{array}{*{20}{c}}
3&{10} \\
2&7
\end{array}} \right]$.
Answer
Verified
504k+ views
Hint – In this question we have to find the inverse of the given matrix using elementary transformations. Elementary transformations means that we start with a row or a column and by applying various transformations on the chosen entity either rows or columns we try to make maximum possible zeroes. Use this concept along with A=IA where I is the identity matrix, to get the inverse.
Complete step-by-step answer:
Given matrix is
$\left[ {\begin{array}{*{20}{c}}
3&{10} \\
2&7
\end{array}} \right]$
Now we have to find out the inverse of this matrix using elementary transformations,
Let,
$A = \left[ {\begin{array}{*{20}{c}}
3&{10} \\
2&7
\end{array}} \right]$
As we know A is also written as $A = IA$, where I is an identity matrix.
$I = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]$
$
\Rightarrow IA = \left[ {\begin{array}{*{20}{c}}
3&{10} \\
2&7
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
3&{10} \\
2&7
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]A \\
$
Now, apply row transformations so that the L.H.S matrix become identity matrix therefore we apply,
${R_1} \to {R_1} - {R_2}$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{3 - 2}&{10 - 7} \\
2&7
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{1 - 0}&{0 - 1} \\
0&1
\end{array}} \right]A$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&3 \\
2&7
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
0&1
\end{array}} \right]A$
Now apply ${R_2} \to {R_2} - 2{R_1}$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&3 \\
{2 - 2}&{7 - 6}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{0 - 2}&{1 + 2}
\end{array}} \right]A$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&3 \\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 2}&3
\end{array}} \right]A$
Now apply ${R_1} \to {R_1} - 3{R_2}$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{1 - 0}&{3 - 3} \\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{1 + 6}&{ - 1 - 9} \\
{ - 2}&3
\end{array}} \right]A$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
7&{ - 10} \\
{ - 2}&3
\end{array}} \right]A$
Now shift A to L.H.S
$ \Rightarrow {A^{ - 1}}\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
7&{ - 10} \\
{ - 2}&3
\end{array}} \right]$
$ \Rightarrow {A^{ - 1}}I = \left[ {\begin{array}{*{20}{c}}
7&{ - 10} \\
{ - 2}&3
\end{array}} \right]$
$ \Rightarrow {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
7&{ - 10} \\
{ - 2}&3
\end{array}} \right]$
So, this is the required A inverse using elementary transformations.
So, this is the required answer.
Note – Whenever we face such type of problems the key concept is to apply the row or column transformations accurately, however this problem could also be solved using other direct formula technique to find inverse of the matrix that is ${{\text{A}}^{ - 1}} = \dfrac{{}}{{\left| A \right|}}adj(A)$, but in this problem only elementary transformation is being asked.
Complete step-by-step answer:
Given matrix is
$\left[ {\begin{array}{*{20}{c}}
3&{10} \\
2&7
\end{array}} \right]$
Now we have to find out the inverse of this matrix using elementary transformations,
Let,
$A = \left[ {\begin{array}{*{20}{c}}
3&{10} \\
2&7
\end{array}} \right]$
As we know A is also written as $A = IA$, where I is an identity matrix.
$I = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]$
$
\Rightarrow IA = \left[ {\begin{array}{*{20}{c}}
3&{10} \\
2&7
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
3&{10} \\
2&7
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]A \\
$
Now, apply row transformations so that the L.H.S matrix become identity matrix therefore we apply,
${R_1} \to {R_1} - {R_2}$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{3 - 2}&{10 - 7} \\
2&7
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{1 - 0}&{0 - 1} \\
0&1
\end{array}} \right]A$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&3 \\
2&7
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
0&1
\end{array}} \right]A$
Now apply ${R_2} \to {R_2} - 2{R_1}$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&3 \\
{2 - 2}&{7 - 6}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{0 - 2}&{1 + 2}
\end{array}} \right]A$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&3 \\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
{ - 2}&3
\end{array}} \right]A$
Now apply ${R_1} \to {R_1} - 3{R_2}$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
{1 - 0}&{3 - 3} \\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{1 + 6}&{ - 1 - 9} \\
{ - 2}&3
\end{array}} \right]A$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
7&{ - 10} \\
{ - 2}&3
\end{array}} \right]A$
Now shift A to L.H.S
$ \Rightarrow {A^{ - 1}}\left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
7&{ - 10} \\
{ - 2}&3
\end{array}} \right]$
$ \Rightarrow {A^{ - 1}}I = \left[ {\begin{array}{*{20}{c}}
7&{ - 10} \\
{ - 2}&3
\end{array}} \right]$
$ \Rightarrow {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
7&{ - 10} \\
{ - 2}&3
\end{array}} \right]$
So, this is the required A inverse using elementary transformations.
So, this is the required answer.
Note – Whenever we face such type of problems the key concept is to apply the row or column transformations accurately, however this problem could also be solved using other direct formula technique to find inverse of the matrix that is ${{\text{A}}^{ - 1}} = \dfrac{{}}{{\left| A \right|}}adj(A)$, but in this problem only elementary transformation is being asked.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
Why is the cell called the structural and functional class 12 biology CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What is a transformer Explain the principle construction class 12 physics CBSE