Answer
Verified
453k+ views
Hint:
The theory of the equipartition of energy helps to find the solution for this problem and also by using the kinetic energy formula and the heat capacity formula the specific heat of aluminium at the high temperature can be determined.
Useful formula:
By law of Equipartition of energy,
$\dfrac{3}{2}{K_B}T = \dfrac{1}{2}mCT$
Where, ${K_B}$ is the Boltzmann constant, $T$ is the temperature, $m$ is the atomic mass of the aluminium and $C$ is the specific heat of the aluminium.
Complete step-by-step solution:
Given that,
The atomic weight of aluminium is $27\,g$,
By law of Equipartition of energy,
$\dfrac{3}{2}{K_B}T = \dfrac{1}{2}mCT\,..................\left( 1 \right)$
By cancelling the temperature value on both side in the above equation, then the above equation is written as,
$\dfrac{3}{2}{K_B} = \dfrac{1}{2}mC$
By cancelling the denominator on both sides, then the above equation is written as,
$3{K_B} = mC$
By keeping the specific heat of the aluminium in one side and the other terms in other side, then the above equation is written as,
$C = \dfrac{{3 \times {K_B}}}{m}$
Here to find the specific heat capacity the Avogadro number $\left( {{N_A}} \right)$ should be multiplied with RHS, then the above equation is written as,
$C = \dfrac{{3 \times {K_B}}}{m} \times {N_A}\,.................\left( 2 \right)$
On substituting the known values of Boltzmann constant, Avogadro number and the atomic mass of aluminium in the above equation (2), then the above equation is written as,
$C = \dfrac{{3 \times 1.38 \times {{10}^{ - 23}} \times 6.02 \times {{10}^{23}}}}{{27 \times {{10}^{ - 3}}}}$
In numerator, the terms ${10^{ - 23}}$ and the term ${10^{23}}$ gets cancelled, then the above equation is written as,
$C = \dfrac{{3 \times 1.38 \times 6.02}}{{27 \times {{10}^{ - 3}}}}$
On multiplying the terms in numerator,
$C = \dfrac{{24.9228}}{{27 \times {{10}^{ - 3}}}}$
By taking the term ${10^{ - 3}}$ from denominator to the numerator, then the above equation is written as,
$C = \dfrac{{24.9228 \times {{10}^3}}}{{27}}$
On multiplying the terms in numerator, then
$C = \dfrac{{24922.8}}{{27}}$
Now dividing the terms, then the above equation is written as,
$C = 923.066\,Jk{g^{ - 1}}{K^{ - 1}}$
Thus, the above equation shows the specific heat of the aluminium.
Hence, the option (D) is the correct answer.
Note:-
The reason for multiplying the Avogadro number in the solution, the mass of aluminium is given as atomic mass so the Avogadro number is multiplied. While substituting the mass value it must be in terms of kilogram, so the term ${10^{ - 3}}$ is multiplied with the atomic mass value.
The theory of the equipartition of energy helps to find the solution for this problem and also by using the kinetic energy formula and the heat capacity formula the specific heat of aluminium at the high temperature can be determined.
Useful formula:
By law of Equipartition of energy,
$\dfrac{3}{2}{K_B}T = \dfrac{1}{2}mCT$
Where, ${K_B}$ is the Boltzmann constant, $T$ is the temperature, $m$ is the atomic mass of the aluminium and $C$ is the specific heat of the aluminium.
Complete step-by-step solution:
Given that,
The atomic weight of aluminium is $27\,g$,
By law of Equipartition of energy,
$\dfrac{3}{2}{K_B}T = \dfrac{1}{2}mCT\,..................\left( 1 \right)$
By cancelling the temperature value on both side in the above equation, then the above equation is written as,
$\dfrac{3}{2}{K_B} = \dfrac{1}{2}mC$
By cancelling the denominator on both sides, then the above equation is written as,
$3{K_B} = mC$
By keeping the specific heat of the aluminium in one side and the other terms in other side, then the above equation is written as,
$C = \dfrac{{3 \times {K_B}}}{m}$
Here to find the specific heat capacity the Avogadro number $\left( {{N_A}} \right)$ should be multiplied with RHS, then the above equation is written as,
$C = \dfrac{{3 \times {K_B}}}{m} \times {N_A}\,.................\left( 2 \right)$
On substituting the known values of Boltzmann constant, Avogadro number and the atomic mass of aluminium in the above equation (2), then the above equation is written as,
$C = \dfrac{{3 \times 1.38 \times {{10}^{ - 23}} \times 6.02 \times {{10}^{23}}}}{{27 \times {{10}^{ - 3}}}}$
In numerator, the terms ${10^{ - 23}}$ and the term ${10^{23}}$ gets cancelled, then the above equation is written as,
$C = \dfrac{{3 \times 1.38 \times 6.02}}{{27 \times {{10}^{ - 3}}}}$
On multiplying the terms in numerator,
$C = \dfrac{{24.9228}}{{27 \times {{10}^{ - 3}}}}$
By taking the term ${10^{ - 3}}$ from denominator to the numerator, then the above equation is written as,
$C = \dfrac{{24.9228 \times {{10}^3}}}{{27}}$
On multiplying the terms in numerator, then
$C = \dfrac{{24922.8}}{{27}}$
Now dividing the terms, then the above equation is written as,
$C = 923.066\,Jk{g^{ - 1}}{K^{ - 1}}$
Thus, the above equation shows the specific heat of the aluminium.
Hence, the option (D) is the correct answer.
Note:-
The reason for multiplying the Avogadro number in the solution, the mass of aluminium is given as atomic mass so the Avogadro number is multiplied. While substituting the mass value it must be in terms of kilogram, so the term ${10^{ - 3}}$ is multiplied with the atomic mass value.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE