
Using trapezoidal rule, by dividing the interval [0, 4] into 4 equal parts, the approximate value of \[\int\limits_{0}^{4}{{{x}^{2}}+1}\] is equal to
(a) 25
(b) 26
(c) 27
(d) 28
Answer
614.4k+ views
Hint: Divide the interval into 4 parts thus find the sub interval of width \[\Delta x\], Now use the trapezoidal rule formula for 4 equal parts. Substitute x = 0, 1, 2, 3, 4 in f (x) get the values and substitute in the formula.
Complete step-by-step solution -
Trapezoidal rule is used for approximating the definite integrals where it uses the linear approximations of the function. Let f (x) be a continuous function on the interval [a, b] which is [0, 4]. Now divide the intervals [0, 4] into n equal subintervals with each of width, \[\Delta x\] i.e. n = 4.
\[\Delta x=\dfrac{b-a}{n}=\dfrac{4-0}{4}=\dfrac{4}{4}=1\]
Here, n = 4, as it is told to divide interval into 4 equal parts,
Here, \[f\left( x \right)=\int\limits_{0}^{4}{{{x}^{2}}+1}dx\]
Then the trapezoidal rule formula for area approximating the definite integral, \[\int\limits_{a}^{b}{f\left( x \right)}dx\] is given by,
\[\int\limits_{a}^{b}{f\left( x \right)}dx=\dfrac{\Delta x}{2}\left[ f\left( {{x}_{0}} \right)+2f\left( {{x}_{1}} \right)+2f\left( {{x}_{2}} \right)+.....+2f\left( {{x}_{n-1}} \right)+f\left( {{x}_{n}} \right) \right]\] where, \[{{x}_{i}}=a+i\Delta x\].
\[\int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{\Delta x}{2}\left[ f\left( {{x}_{0}} \right)+2f\left( {{x}_{1}} \right)+2f\left( {{x}_{2}} \right)+2f\left( {{x}_{3}} \right)+f\left( {{x}_{4}} \right) \right] \]...........(1)
Now let us find the values of \[f\left( {{x}_{0}} \right),f\left( {{x}_{1}} \right),f\left( {{x}_{2}} \right),f\left( {{x}_{3}} \right)\] and \[f\left( {{x}_{4}} \right)\], when x = 0,1,2,3,4 \[f\left( {{x}_{0}} \right)=f\left( 0 \right)={{x}^{2}}+1=0+1=1\].
\[\begin{align}
& f\left( {{x}_{1}} \right)=f\left( 1 \right)={{x}^{2}}+1={{1}^{2}}+1=2 \\
& f\left( {{x}_{2}} \right)=f\left( 2 \right)={{2}^{2}}+1=4+1=5 \\
& f\left( {{x}_{3}} \right)=f\left( 3 \right)={{3}^{2}}+1=9+1=10 \\
& f\left( {{x}_{4}} \right)=f\left( 4 \right)={{4}^{2}}+1=16+1=17 \\
\end{align}\]
Thus we got \[f\left( {{x}_{0}} \right)=1,f\left( {{x}_{1}} \right)=2,f\left( {{x}_{2}} \right)=5,f\left( {{x}_{3}} \right)=10\] and \[f\left( {{x}_{4}} \right)=17,\Delta x=1\].
Now let us substitute these values in equation (1).
\[\begin{align}
& \int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{\Delta x}{2}\left[ f\left( {{x}_{0}} \right)+2f\left( {{x}_{1}} \right)+2f\left( {{x}_{2}} \right)+2f\left( {{x}_{3}} \right)+f\left( {{x}_{4}} \right) \right] \\
& \int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{1}{2}\left[ 1+\left( 2\times 2 \right)+\left( 2\times 5 \right)+\left( 2\times 10 \right)+17 \right] \\
& \int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{1}{2}\left[ 1+4+10+20+17 \right] \\
& \int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{1}{2}\times 52=26 \\
\end{align}\]
Thus by dividing the interval [0, 4] into 4equal parts, the approximate value \[\int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=26\].
\[\therefore \] Option (b) is the correct answer.
Note: Trapezoidal rule integration works by approximating the region under the graph of a function as a trapezoid and calculating the area. If we compare trapezoidal rule to Simpson’s rule, trapezoidal rule doesn’t give accurate value, it is because trapezoidal rule uses linear approximations.
Complete step-by-step solution -
Trapezoidal rule is used for approximating the definite integrals where it uses the linear approximations of the function. Let f (x) be a continuous function on the interval [a, b] which is [0, 4]. Now divide the intervals [0, 4] into n equal subintervals with each of width, \[\Delta x\] i.e. n = 4.
\[\Delta x=\dfrac{b-a}{n}=\dfrac{4-0}{4}=\dfrac{4}{4}=1\]
Here, n = 4, as it is told to divide interval into 4 equal parts,
Here, \[f\left( x \right)=\int\limits_{0}^{4}{{{x}^{2}}+1}dx\]
Then the trapezoidal rule formula for area approximating the definite integral, \[\int\limits_{a}^{b}{f\left( x \right)}dx\] is given by,
\[\int\limits_{a}^{b}{f\left( x \right)}dx=\dfrac{\Delta x}{2}\left[ f\left( {{x}_{0}} \right)+2f\left( {{x}_{1}} \right)+2f\left( {{x}_{2}} \right)+.....+2f\left( {{x}_{n-1}} \right)+f\left( {{x}_{n}} \right) \right]\] where, \[{{x}_{i}}=a+i\Delta x\].
\[\int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{\Delta x}{2}\left[ f\left( {{x}_{0}} \right)+2f\left( {{x}_{1}} \right)+2f\left( {{x}_{2}} \right)+2f\left( {{x}_{3}} \right)+f\left( {{x}_{4}} \right) \right] \]...........(1)
Now let us find the values of \[f\left( {{x}_{0}} \right),f\left( {{x}_{1}} \right),f\left( {{x}_{2}} \right),f\left( {{x}_{3}} \right)\] and \[f\left( {{x}_{4}} \right)\], when x = 0,1,2,3,4 \[f\left( {{x}_{0}} \right)=f\left( 0 \right)={{x}^{2}}+1=0+1=1\].
\[\begin{align}
& f\left( {{x}_{1}} \right)=f\left( 1 \right)={{x}^{2}}+1={{1}^{2}}+1=2 \\
& f\left( {{x}_{2}} \right)=f\left( 2 \right)={{2}^{2}}+1=4+1=5 \\
& f\left( {{x}_{3}} \right)=f\left( 3 \right)={{3}^{2}}+1=9+1=10 \\
& f\left( {{x}_{4}} \right)=f\left( 4 \right)={{4}^{2}}+1=16+1=17 \\
\end{align}\]
Thus we got \[f\left( {{x}_{0}} \right)=1,f\left( {{x}_{1}} \right)=2,f\left( {{x}_{2}} \right)=5,f\left( {{x}_{3}} \right)=10\] and \[f\left( {{x}_{4}} \right)=17,\Delta x=1\].
Now let us substitute these values in equation (1).
\[\begin{align}
& \int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{\Delta x}{2}\left[ f\left( {{x}_{0}} \right)+2f\left( {{x}_{1}} \right)+2f\left( {{x}_{2}} \right)+2f\left( {{x}_{3}} \right)+f\left( {{x}_{4}} \right) \right] \\
& \int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{1}{2}\left[ 1+\left( 2\times 2 \right)+\left( 2\times 5 \right)+\left( 2\times 10 \right)+17 \right] \\
& \int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{1}{2}\left[ 1+4+10+20+17 \right] \\
& \int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{1}{2}\times 52=26 \\
\end{align}\]
Thus by dividing the interval [0, 4] into 4equal parts, the approximate value \[\int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=26\].
\[\therefore \] Option (b) is the correct answer.
Note: Trapezoidal rule integration works by approximating the region under the graph of a function as a trapezoid and calculating the area. If we compare trapezoidal rule to Simpson’s rule, trapezoidal rule doesn’t give accurate value, it is because trapezoidal rule uses linear approximations.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

Calculate the equivalent resistance between a and b class 12 physics CBSE

How many states of matter are there in total class 12 chemistry CBSE

Which of the following is the best conductor of electricity class 12 physics CBSE

