Answer
Verified
491.4k+ views
Hint: Divide the interval into 4 parts thus find the sub interval of width \[\Delta x\], Now use the trapezoidal rule formula for 4 equal parts. Substitute x = 0, 1, 2, 3, 4 in f (x) get the values and substitute in the formula.
Complete step-by-step solution -
Trapezoidal rule is used for approximating the definite integrals where it uses the linear approximations of the function. Let f (x) be a continuous function on the interval [a, b] which is [0, 4]. Now divide the intervals [0, 4] into n equal subintervals with each of width, \[\Delta x\] i.e. n = 4.
\[\Delta x=\dfrac{b-a}{n}=\dfrac{4-0}{4}=\dfrac{4}{4}=1\]
Here, n = 4, as it is told to divide interval into 4 equal parts,
Here, \[f\left( x \right)=\int\limits_{0}^{4}{{{x}^{2}}+1}dx\]
Then the trapezoidal rule formula for area approximating the definite integral, \[\int\limits_{a}^{b}{f\left( x \right)}dx\] is given by,
\[\int\limits_{a}^{b}{f\left( x \right)}dx=\dfrac{\Delta x}{2}\left[ f\left( {{x}_{0}} \right)+2f\left( {{x}_{1}} \right)+2f\left( {{x}_{2}} \right)+.....+2f\left( {{x}_{n-1}} \right)+f\left( {{x}_{n}} \right) \right]\] where, \[{{x}_{i}}=a+i\Delta x\].
\[\int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{\Delta x}{2}\left[ f\left( {{x}_{0}} \right)+2f\left( {{x}_{1}} \right)+2f\left( {{x}_{2}} \right)+2f\left( {{x}_{3}} \right)+f\left( {{x}_{4}} \right) \right] \]...........(1)
Now let us find the values of \[f\left( {{x}_{0}} \right),f\left( {{x}_{1}} \right),f\left( {{x}_{2}} \right),f\left( {{x}_{3}} \right)\] and \[f\left( {{x}_{4}} \right)\], when x = 0,1,2,3,4 \[f\left( {{x}_{0}} \right)=f\left( 0 \right)={{x}^{2}}+1=0+1=1\].
\[\begin{align}
& f\left( {{x}_{1}} \right)=f\left( 1 \right)={{x}^{2}}+1={{1}^{2}}+1=2 \\
& f\left( {{x}_{2}} \right)=f\left( 2 \right)={{2}^{2}}+1=4+1=5 \\
& f\left( {{x}_{3}} \right)=f\left( 3 \right)={{3}^{2}}+1=9+1=10 \\
& f\left( {{x}_{4}} \right)=f\left( 4 \right)={{4}^{2}}+1=16+1=17 \\
\end{align}\]
Thus we got \[f\left( {{x}_{0}} \right)=1,f\left( {{x}_{1}} \right)=2,f\left( {{x}_{2}} \right)=5,f\left( {{x}_{3}} \right)=10\] and \[f\left( {{x}_{4}} \right)=17,\Delta x=1\].
Now let us substitute these values in equation (1).
\[\begin{align}
& \int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{\Delta x}{2}\left[ f\left( {{x}_{0}} \right)+2f\left( {{x}_{1}} \right)+2f\left( {{x}_{2}} \right)+2f\left( {{x}_{3}} \right)+f\left( {{x}_{4}} \right) \right] \\
& \int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{1}{2}\left[ 1+\left( 2\times 2 \right)+\left( 2\times 5 \right)+\left( 2\times 10 \right)+17 \right] \\
& \int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{1}{2}\left[ 1+4+10+20+17 \right] \\
& \int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{1}{2}\times 52=26 \\
\end{align}\]
Thus by dividing the interval [0, 4] into 4equal parts, the approximate value \[\int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=26\].
\[\therefore \] Option (b) is the correct answer.
Note: Trapezoidal rule integration works by approximating the region under the graph of a function as a trapezoid and calculating the area. If we compare trapezoidal rule to Simpson’s rule, trapezoidal rule doesn’t give accurate value, it is because trapezoidal rule uses linear approximations.
Complete step-by-step solution -
Trapezoidal rule is used for approximating the definite integrals where it uses the linear approximations of the function. Let f (x) be a continuous function on the interval [a, b] which is [0, 4]. Now divide the intervals [0, 4] into n equal subintervals with each of width, \[\Delta x\] i.e. n = 4.
\[\Delta x=\dfrac{b-a}{n}=\dfrac{4-0}{4}=\dfrac{4}{4}=1\]
Here, n = 4, as it is told to divide interval into 4 equal parts,
Here, \[f\left( x \right)=\int\limits_{0}^{4}{{{x}^{2}}+1}dx\]
Then the trapezoidal rule formula for area approximating the definite integral, \[\int\limits_{a}^{b}{f\left( x \right)}dx\] is given by,
\[\int\limits_{a}^{b}{f\left( x \right)}dx=\dfrac{\Delta x}{2}\left[ f\left( {{x}_{0}} \right)+2f\left( {{x}_{1}} \right)+2f\left( {{x}_{2}} \right)+.....+2f\left( {{x}_{n-1}} \right)+f\left( {{x}_{n}} \right) \right]\] where, \[{{x}_{i}}=a+i\Delta x\].
\[\int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{\Delta x}{2}\left[ f\left( {{x}_{0}} \right)+2f\left( {{x}_{1}} \right)+2f\left( {{x}_{2}} \right)+2f\left( {{x}_{3}} \right)+f\left( {{x}_{4}} \right) \right] \]...........(1)
Now let us find the values of \[f\left( {{x}_{0}} \right),f\left( {{x}_{1}} \right),f\left( {{x}_{2}} \right),f\left( {{x}_{3}} \right)\] and \[f\left( {{x}_{4}} \right)\], when x = 0,1,2,3,4 \[f\left( {{x}_{0}} \right)=f\left( 0 \right)={{x}^{2}}+1=0+1=1\].
\[\begin{align}
& f\left( {{x}_{1}} \right)=f\left( 1 \right)={{x}^{2}}+1={{1}^{2}}+1=2 \\
& f\left( {{x}_{2}} \right)=f\left( 2 \right)={{2}^{2}}+1=4+1=5 \\
& f\left( {{x}_{3}} \right)=f\left( 3 \right)={{3}^{2}}+1=9+1=10 \\
& f\left( {{x}_{4}} \right)=f\left( 4 \right)={{4}^{2}}+1=16+1=17 \\
\end{align}\]
Thus we got \[f\left( {{x}_{0}} \right)=1,f\left( {{x}_{1}} \right)=2,f\left( {{x}_{2}} \right)=5,f\left( {{x}_{3}} \right)=10\] and \[f\left( {{x}_{4}} \right)=17,\Delta x=1\].
Now let us substitute these values in equation (1).
\[\begin{align}
& \int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{\Delta x}{2}\left[ f\left( {{x}_{0}} \right)+2f\left( {{x}_{1}} \right)+2f\left( {{x}_{2}} \right)+2f\left( {{x}_{3}} \right)+f\left( {{x}_{4}} \right) \right] \\
& \int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{1}{2}\left[ 1+\left( 2\times 2 \right)+\left( 2\times 5 \right)+\left( 2\times 10 \right)+17 \right] \\
& \int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{1}{2}\left[ 1+4+10+20+17 \right] \\
& \int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=\dfrac{1}{2}\times 52=26 \\
\end{align}\]
Thus by dividing the interval [0, 4] into 4equal parts, the approximate value \[\int\limits_{0}^{4}{\left( {{x}^{2}}+1 \right)dx}=26\].
\[\therefore \] Option (b) is the correct answer.
Note: Trapezoidal rule integration works by approximating the region under the graph of a function as a trapezoid and calculating the area. If we compare trapezoidal rule to Simpson’s rule, trapezoidal rule doesn’t give accurate value, it is because trapezoidal rule uses linear approximations.
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE