![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
Using van der Waals equation, $\left( {P + \dfrac{a}{{{V^2}}}} \right)\left( {V - b} \right) = RT$ the term that accounts for intermolecular forces in van-der Waals equation for non-ideal gas is,
A.$RT$
B.$V - b$
C.$P + \dfrac{a}{{{V^2}}}$
D.$R{T^{ - 1}}$
Answer
454.5k+ views
Hint: Ideal gas equation doesn’t hold true for real gases. Hence van der Waals introduced a new equation by modifying the ideal gas equation. The extra terms in van der Waals equation are a and b.
Complete step by step answer:
Van der Waals equation for real gas is,
$\left( {P + \dfrac{{a{n^2}}}{{{V^2}}}} \right)\left( {V - nb} \right) = nRT$
Where,
P = Pressure of gas
V = Volume of gas
n = Number of moles of gas
T = Temperature of the gas in Kelvin.
R is universal gas constant. a and b are certain constants called van der Waals constants. a corresponds to intermolecular forces and b corresponds to co-volume of excluded volume of the gas.
In the question, n=1. i.e. the number of moles of gas is one. The corresponding equation is,
$\left( {P + \dfrac{a}{{{V^2}}}} \right)\left( {V - b} \right) = RT$
In the derivation of the ideal gas equation, it is assumed that there is no force of interaction between the gas molecules. But it is not true. A molecule in the center of the container will experience forces of interaction from all directions equally. Hence these forces cancel each other. But when the molecule reaches the wall of the container it is attracted from only one side. Hence it will strike the wall with a lower pressure than expected if there is no attraction between the molecules. Therefore, it is necessary to add a certain correction factor with the term P. This factor is called internal pressure and is given by, \[\dfrac{a}{{{V^2}}}\] . Hence the term that account for intermolecular forces in van-der Waals equation for non-ideal gas is,
$\left( {P + \dfrac{a}{{{V^2}}}} \right)$.
And hence option C is correct.
Note:
The term b in van der Waals equation corresponds to excluded volume for one mole. It is equal to four times the volume of one mole of gaseous molecules. Value of b is directly proportional to size of the molecules.
Complete step by step answer:
Van der Waals equation for real gas is,
$\left( {P + \dfrac{{a{n^2}}}{{{V^2}}}} \right)\left( {V - nb} \right) = nRT$
Where,
P = Pressure of gas
V = Volume of gas
n = Number of moles of gas
T = Temperature of the gas in Kelvin.
R is universal gas constant. a and b are certain constants called van der Waals constants. a corresponds to intermolecular forces and b corresponds to co-volume of excluded volume of the gas.
In the question, n=1. i.e. the number of moles of gas is one. The corresponding equation is,
$\left( {P + \dfrac{a}{{{V^2}}}} \right)\left( {V - b} \right) = RT$
In the derivation of the ideal gas equation, it is assumed that there is no force of interaction between the gas molecules. But it is not true. A molecule in the center of the container will experience forces of interaction from all directions equally. Hence these forces cancel each other. But when the molecule reaches the wall of the container it is attracted from only one side. Hence it will strike the wall with a lower pressure than expected if there is no attraction between the molecules. Therefore, it is necessary to add a certain correction factor with the term P. This factor is called internal pressure and is given by, \[\dfrac{a}{{{V^2}}}\] . Hence the term that account for intermolecular forces in van-der Waals equation for non-ideal gas is,
$\left( {P + \dfrac{a}{{{V^2}}}} \right)$.
And hence option C is correct.
Note:
The term b in van der Waals equation corresponds to excluded volume for one mole. It is equal to four times the volume of one mole of gaseous molecules. Value of b is directly proportional to size of the molecules.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Find the value of x if the mode of the following data class 11 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
10 examples of friction in our daily life
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Prokaryotic Cells and Eukaryotic Cells
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
State and prove Bernoullis theorem class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What organs are located on the left side of your body class 11 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How many valence electrons does nitrogen have class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)