Answer
Verified
499.8k+ views
Hint: Show that the point P lies on AB by showing that AB and AP are collinear. Then show that the point P lies on CD by showing that CP and CD are collinear. Since P lies on both AB and CD, it is the point of intersection of AB and CD.
Complete step-by-step answer:
From the given points we calculate the position vectors of each point from origin as follows:
\[\overrightarrow {OA} = - 2i + 3j + 5k\]
\[\overrightarrow {OB} = 7i - 1k\]
\[\overrightarrow {OC} = - 3i - 2j - 5k\]
\[\overrightarrow {OD} = 3i + 4j + 7k\]
\[\overrightarrow {OP} = i + 2j + 3k\]
We now find the vector \[\overrightarrow {AP} \] as follows:
\[\overrightarrow {AP} = \overrightarrow {OP} - \overrightarrow {OA} \]
Substituting the vectors, we get:
\[\overrightarrow {AP} = (i + 2j + 3k) - ( - 2i + 3j + 5k)\]
Simplifying, we get:
\[\overrightarrow {AP} = 3i - j - 2k........(1)\]
Now, we find the vector \[\overrightarrow {AB} \] as follows:
\[\overrightarrow {AB} = \overrightarrow {OB} - \overrightarrow {OA} \]
Substituting the vectors, we get:
\[\overrightarrow {AB} = (7i - 1k) - ( - 2i + 3j + 5k)\]
Simplifying the expression, we get:
\[\overrightarrow {AB} = 9i - 3j - 6k.........(2)\]
Comparing equation (1) and equation (2), we observe:
\[\overrightarrow {AB} = 3\overrightarrow {AP} \]
Hence, the point P lies on the line AB.
We now find the vector \[\overrightarrow {CP} \] as follows:
\[\overrightarrow {CP} = \overrightarrow {OP} - \overrightarrow {OC} \]
Substituting the vectors, we get:
\[\overrightarrow {CP} = (i + 2j + 3k) - ( - 3i - 2j - 5k)\]
Simplifying, we get:
\[\overrightarrow {CP} = 4i + 4j + 8k........(3)\]
Now, we find the vector \[\overrightarrow {CD} \] as follows:
\[\overrightarrow {CD} = \overrightarrow {OD} - \overrightarrow {OC} \]
Substituting the vectors, we get:
\[\overrightarrow {CD} = (3i + 4j + 7k) - ( - 3i - 2j - 5k)\]
Simplifying the expression, we get:
\[\overrightarrow {CD} = 6i + 6j + 12k.........(4)\]
Comparing equation (3) and (4), we observe:
\[\overrightarrow {CD} = \dfrac{3}{2}\overrightarrow {CP} \]
Hence, the point P lies on the line CD.
Since, P lies on both the lines AB and CD, it is the point of intersection of the two lines.
Hence, we showed that AB and CD intersect at point P.
Note: The way we are asked to solve is clearly mentioned as using vectors, it is an error to solve using any other method other than vector method. Also, vector \[\overrightarrow {AP} \] is \[\overrightarrow {OP} - \overrightarrow {OA} \] and not \[\overrightarrow {OA} - \overrightarrow {OP} \] .
Complete step-by-step answer:
From the given points we calculate the position vectors of each point from origin as follows:
\[\overrightarrow {OA} = - 2i + 3j + 5k\]
\[\overrightarrow {OB} = 7i - 1k\]
\[\overrightarrow {OC} = - 3i - 2j - 5k\]
\[\overrightarrow {OD} = 3i + 4j + 7k\]
\[\overrightarrow {OP} = i + 2j + 3k\]
We now find the vector \[\overrightarrow {AP} \] as follows:
\[\overrightarrow {AP} = \overrightarrow {OP} - \overrightarrow {OA} \]
Substituting the vectors, we get:
\[\overrightarrow {AP} = (i + 2j + 3k) - ( - 2i + 3j + 5k)\]
Simplifying, we get:
\[\overrightarrow {AP} = 3i - j - 2k........(1)\]
Now, we find the vector \[\overrightarrow {AB} \] as follows:
\[\overrightarrow {AB} = \overrightarrow {OB} - \overrightarrow {OA} \]
Substituting the vectors, we get:
\[\overrightarrow {AB} = (7i - 1k) - ( - 2i + 3j + 5k)\]
Simplifying the expression, we get:
\[\overrightarrow {AB} = 9i - 3j - 6k.........(2)\]
Comparing equation (1) and equation (2), we observe:
\[\overrightarrow {AB} = 3\overrightarrow {AP} \]
Hence, the point P lies on the line AB.
We now find the vector \[\overrightarrow {CP} \] as follows:
\[\overrightarrow {CP} = \overrightarrow {OP} - \overrightarrow {OC} \]
Substituting the vectors, we get:
\[\overrightarrow {CP} = (i + 2j + 3k) - ( - 3i - 2j - 5k)\]
Simplifying, we get:
\[\overrightarrow {CP} = 4i + 4j + 8k........(3)\]
Now, we find the vector \[\overrightarrow {CD} \] as follows:
\[\overrightarrow {CD} = \overrightarrow {OD} - \overrightarrow {OC} \]
Substituting the vectors, we get:
\[\overrightarrow {CD} = (3i + 4j + 7k) - ( - 3i - 2j - 5k)\]
Simplifying the expression, we get:
\[\overrightarrow {CD} = 6i + 6j + 12k.........(4)\]
Comparing equation (3) and (4), we observe:
\[\overrightarrow {CD} = \dfrac{3}{2}\overrightarrow {CP} \]
Hence, the point P lies on the line CD.
Since, P lies on both the lines AB and CD, it is the point of intersection of the two lines.
Hence, we showed that AB and CD intersect at point P.
Note: The way we are asked to solve is clearly mentioned as using vectors, it is an error to solve using any other method other than vector method. Also, vector \[\overrightarrow {AP} \] is \[\overrightarrow {OP} - \overrightarrow {OA} \] and not \[\overrightarrow {OA} - \overrightarrow {OP} \] .
Recently Updated Pages
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
For which of the following reactions H is equal to class 11 chemistry JEE_Main
For the redox reaction MnO4 + C2O42 + H + to Mn2 + class 11 chemistry JEE_Main
In the reaction 2FeCl3 + H2S to 2FeCl2 + 2HCl + S class 11 chemistry JEE_Main
One mole of a nonideal gas undergoes a change of state class 11 chemistry JEE_Main
A stone is projected with speed 20 ms at angle 37circ class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE