When the value of angle A is \[{{90}^{\circ }}\] and B is \[{{0}^{\circ }}\] then find the value of \[{{\sin }^{2}}A-{{\sin }^{2}}B.\]
\[\left( a \right)0\]
\[\left( b \right)\dfrac{1}{2}\]
\[\left( c \right)1\]
\[\left( d \right)2\]
Answer
Verified
466.5k+ views
. We will first of all assume the variables for sin A and sin B and then by calculating the value of variables of sin A and sin B. We will calculate \[{{\sin }^{2}}A\] by using \[{{\sin }^{2}}A=\left( \sin A \right)\left( \sin A \right)\] and similarly \[{{\sin }^{2}}B\] by using \[{{\sin }^{2}}B=\left( \sin B \right)\left( \sin B \right).\] And finally subtract them to get the result.
Complete step-by-step solution
We are given to find the value of the expression
\[{{\sin }^{2}}A-{{\sin }^{2}}B......\left( i \right)\]
Let a = sin A and b = sin B. We are given \[A={{90}^{\circ }}\] and \[B={{0}^{\circ }}.\] We know that the value of \[\sin {{90}^{\circ }}=1\] and the value of \[\sin {{0}^{\circ }}=0.\]
\[\Rightarrow \sin A=\sin {{90}^{\circ }}=1\]
\[\Rightarrow \sin B=\sin {{0}^{\circ }}=0\]
Then the value of \[{{\sin }^{2}}A\] can be obtained by using \[{{\sin }^{2}}A=\left( \sin A \right)\left( \sin A \right).\]
\[\Rightarrow {{\sin }^{2}}A={{\sin }^{2}}{{90}^{\circ }}=\left( \sin {{90}^{\circ }} \right)\left( \sin {{90}^{\circ }} \right)\]
\[\Rightarrow {{\sin }^{2}}A={{\sin }^{2}}{{90}^{\circ }}=1\times 1\]
\[\Rightarrow {{\sin }^{2}}A={{\sin }^{2}}{{90}^{\circ }}=1\]
\[\Rightarrow {{\sin }^{2}}A=1\]
And
\[{{\sin }^{2}}B={{\sin }^{2}}{{0}^{\circ }}=\left( \sin \left( {{0}^{\circ }} \right) \right)\sin {{0}^{\circ }}\]
\[\Rightarrow {{\sin }^{2}}B={{\sin }^{2}}{{0}^{\circ }}=0\times 0\]
\[\Rightarrow {{\sin }^{2}}B={{\sin }^{2}}{{0}^{\circ }}=0\]
Then the value of \[{{\sin }^{2}}A-{{\sin }^{2}}B\] will be
\[{{\sin }^{2}}A-{{\sin }^{2}}B={{\sin }^{2}}{{90}^{\circ }}-{{\sin }^{2}}{{0}^{\circ }}\]
\[\Rightarrow {{\sin }^{2}}A-{{\sin }^{2}}B=1-0\]
\[\Rightarrow {{\sin }^{2}}A-{{\sin }^{2}}B=1\]
Therefore, the correct option is (a).
Note: The possibility of mistake can be when the angles are \[A={{45}^{\circ }}\] or \[B={{45}^{\circ }}\] then \[\sin {{45}^{\circ }}\] would be \[\sin {{45}^{\circ }}=\dfrac{1}{\sqrt{2}}\] and \[{{\sin }^{2}}{{45}^{\circ }}=\left( \sin {{45}^{\circ }} \right)\left( \sin {{45}^{\circ }} \right)=\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{1}{\sqrt{2}} \right)=\dfrac{1}{2}.\] So, there can be a difference between \[{{\sin }^{2}}{{45}^{\circ }}\] and \[\sin {{45}^{\circ }}.\] Here it was \[A={{90}^{\circ }}\] and \[\sin {{90}^{\circ }}=1={{\sin }^{2}}{{90}^{\circ }},\] so that is the same here.
Complete step-by-step solution
We are given to find the value of the expression
\[{{\sin }^{2}}A-{{\sin }^{2}}B......\left( i \right)\]
Let a = sin A and b = sin B. We are given \[A={{90}^{\circ }}\] and \[B={{0}^{\circ }}.\] We know that the value of \[\sin {{90}^{\circ }}=1\] and the value of \[\sin {{0}^{\circ }}=0.\]
\[\Rightarrow \sin A=\sin {{90}^{\circ }}=1\]
\[\Rightarrow \sin B=\sin {{0}^{\circ }}=0\]
Then the value of \[{{\sin }^{2}}A\] can be obtained by using \[{{\sin }^{2}}A=\left( \sin A \right)\left( \sin A \right).\]
\[\Rightarrow {{\sin }^{2}}A={{\sin }^{2}}{{90}^{\circ }}=\left( \sin {{90}^{\circ }} \right)\left( \sin {{90}^{\circ }} \right)\]
\[\Rightarrow {{\sin }^{2}}A={{\sin }^{2}}{{90}^{\circ }}=1\times 1\]
\[\Rightarrow {{\sin }^{2}}A={{\sin }^{2}}{{90}^{\circ }}=1\]
\[\Rightarrow {{\sin }^{2}}A=1\]
And
\[{{\sin }^{2}}B={{\sin }^{2}}{{0}^{\circ }}=\left( \sin \left( {{0}^{\circ }} \right) \right)\sin {{0}^{\circ }}\]
\[\Rightarrow {{\sin }^{2}}B={{\sin }^{2}}{{0}^{\circ }}=0\times 0\]
\[\Rightarrow {{\sin }^{2}}B={{\sin }^{2}}{{0}^{\circ }}=0\]
Then the value of \[{{\sin }^{2}}A-{{\sin }^{2}}B\] will be
\[{{\sin }^{2}}A-{{\sin }^{2}}B={{\sin }^{2}}{{90}^{\circ }}-{{\sin }^{2}}{{0}^{\circ }}\]
\[\Rightarrow {{\sin }^{2}}A-{{\sin }^{2}}B=1-0\]
\[\Rightarrow {{\sin }^{2}}A-{{\sin }^{2}}B=1\]
Therefore, the correct option is (a).
Note: The possibility of mistake can be when the angles are \[A={{45}^{\circ }}\] or \[B={{45}^{\circ }}\] then \[\sin {{45}^{\circ }}\] would be \[\sin {{45}^{\circ }}=\dfrac{1}{\sqrt{2}}\] and \[{{\sin }^{2}}{{45}^{\circ }}=\left( \sin {{45}^{\circ }} \right)\left( \sin {{45}^{\circ }} \right)=\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{1}{\sqrt{2}} \right)=\dfrac{1}{2}.\] So, there can be a difference between \[{{\sin }^{2}}{{45}^{\circ }}\] and \[\sin {{45}^{\circ }}.\] Here it was \[A={{90}^{\circ }}\] and \[\sin {{90}^{\circ }}=1={{\sin }^{2}}{{90}^{\circ }},\] so that is the same here.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE