
What is the value of universal gravitational constant G in units of ${g^{ - 1}}c{m^3}{s^{ - 2}}$? Given that $G = 6.67 \times {10^{ - 11}}N{m^2}k{g^{ - 2}}$
(A) $6.67 \times {10^{ - 8}}$
(B) $6.67 \times {10^{ - 7}}$
(C) $6.67 \times {10^{ - 9}}$
(D) $6.67 \times {10^{ - 10}}$
Answer
138.9k+ views
Hint To convert universal gravitation constant into units of ${g^{ - 1}}c{m^3}{s^{ - 2}}$
Take $N = kgm{s^{ - 2}}$
Convert meter to centimeter
Then convert kilogram to gram and put all of them in the unit $N{m^2}k{g^{ - 2}}$
Complete step-by-step answer:
According to Newton’s Law of Gravitation, the Force (F) is directly proportional to the product of their masses and is inversely proportional to square of distance between them.
$F = G\dfrac{{{m_1}{m_2}}}{{{r^2}}}$
where, ${m_1}$ and ${m_2}$ are two masses
$G = $Gravitational Constant
$r = $distance between them
To convert universal gravitational constant to ${g^{ - 1}}c{m^3}{s^{ - 2}}$ from $N{m^2}k{g^{ - 2}}$
It is given that,
$G = 6.67 \times {10^{ - 11}}N{m^2}k{g^{ - 2}}$
As we know that, $N = kgm{s^{ - 2}}$, $m = 100cm$ and $1kg = 1000g$
$\therefore G = 6.67 \times {10^{ - 11}} \times \left( {kgm{s^{ - 2}}} \right)\left( {{m^2}} \right){\left( {kg} \right)^{ - 2}}$
$G = 6.67 \times {10^{ - 11}} \times \left[ {\left( {1000g} \right) \times \left( {100cm} \right) \times {s^{ - 2}}} \right] \times {\left( {100cm} \right)^2} \times {\left( {1000g} \right)^{ - 2}}$
$G = 6.67 \times {10^{ - 11}} \times {10^3}{g^{ - 1}}c{m^3}{s^{ - 1}}$
Therefore, $G = 6.67 \times {10^{ - 8}}{g^{ - 1}}c{m^3}{s^{ - 1}}$
So, the option (A) is correct.
Note The Gravitational Constant is also known as Newtonian Constant of Gravitation and Cavendish Gravitational Constant denoted by G. It is an empirical physical constant. It is involved in the calculation of gravitation effects in Sir Isaac Newton’s law of universal gravitation and in Albert Einstein’s general theory of relativity.
The relation between $g$ and $G$ can be expressed as
$g = \dfrac{{GM}}{{{r^2}}}$
Take $N = kgm{s^{ - 2}}$
Convert meter to centimeter
Then convert kilogram to gram and put all of them in the unit $N{m^2}k{g^{ - 2}}$
Complete step-by-step answer:
According to Newton’s Law of Gravitation, the Force (F) is directly proportional to the product of their masses and is inversely proportional to square of distance between them.
$F = G\dfrac{{{m_1}{m_2}}}{{{r^2}}}$
where, ${m_1}$ and ${m_2}$ are two masses
$G = $Gravitational Constant
$r = $distance between them
To convert universal gravitational constant to ${g^{ - 1}}c{m^3}{s^{ - 2}}$ from $N{m^2}k{g^{ - 2}}$
It is given that,
$G = 6.67 \times {10^{ - 11}}N{m^2}k{g^{ - 2}}$
As we know that, $N = kgm{s^{ - 2}}$, $m = 100cm$ and $1kg = 1000g$
$\therefore G = 6.67 \times {10^{ - 11}} \times \left( {kgm{s^{ - 2}}} \right)\left( {{m^2}} \right){\left( {kg} \right)^{ - 2}}$
$G = 6.67 \times {10^{ - 11}} \times \left[ {\left( {1000g} \right) \times \left( {100cm} \right) \times {s^{ - 2}}} \right] \times {\left( {100cm} \right)^2} \times {\left( {1000g} \right)^{ - 2}}$
$G = 6.67 \times {10^{ - 11}} \times {10^3}{g^{ - 1}}c{m^3}{s^{ - 1}}$
Therefore, $G = 6.67 \times {10^{ - 8}}{g^{ - 1}}c{m^3}{s^{ - 1}}$
So, the option (A) is correct.
Note The Gravitational Constant is also known as Newtonian Constant of Gravitation and Cavendish Gravitational Constant denoted by G. It is an empirical physical constant. It is involved in the calculation of gravitation effects in Sir Isaac Newton’s law of universal gravitation and in Albert Einstein’s general theory of relativity.
The relation between $g$ and $G$ can be expressed as
$g = \dfrac{{GM}}{{{r^2}}}$
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
