Answer
Verified
359.1k+ views
Hint:The voltage drop across the resistor connected in parallel combination is equal. The current through \[500{\text{ }}\Omega \] will be calculated with the help of the given voltage drop. Using the voltage divider rule we will find the relation between the voltage and resistance, R and thus using the voltage drop we will find the value of resistance, R.
Complete step by step answer:
Let us assume current (i) flows through the \[500{\text{ }}\Omega \] resistor and the voltage drop across this resistor is given as \[2.5{\text{ V}}\]. Therefore we can find the current flowing through the \[500{\text{ }}\Omega \] resistor as:
\[{\text{i = }}\dfrac{V}{R}\]
For \[500{\text{ }}\Omega \] resistor,
\[{\text{i = }}\dfrac{{0.25{\text{ V}}}}{{500{\text{ }}\Omega }}\]
\[\Rightarrow {\text{i = 0}}{\text{.005 A}}\]
\[\Rightarrow {\text{i = 5 mA}}\]
Now the voltage across CD branch will be calculated as:
\[{{\text{V}}_{CD}}{\text{ = iR}}\]
\[\Rightarrow {{\text{V}}_{CD}}{\text{ = 5 }} \times {\text{ 1}}{{\text{0}}^{ - 3}}{\text{ }} \times {\text{ 550}}\]
\[\Rightarrow {{\text{V}}_{CD}}{\text{ = 2}}{\text{.75 V}}\]
Also by using voltage divider rule for CD branch we can write as,
\[{{\text{V}}_{CD}}{\text{ = }}\dfrac{{12{\text{ V }} \times {\text{ }}\left( {R||550} \right)}}{{R||550{\text{ + 550}}}}\] , where || denotes parallel combination of resistors
Parallel combination of R and \[550{\text{ }}\Omega \] can be calculated as:
\[{R_{eq.}}{\text{ = }}\dfrac{{R \times 550}}{{R + 550}}{\text{ }}\Omega \]
Thus on substituting the parallel combination we get the result as,
\[{{\text{V}}_{CD}}{\text{ = }}\dfrac{{12{\text{ V }} \times {\text{ }}\dfrac{{R \times 550}}{{R + 550}}}}{{\dfrac{{R \times 550}}{{R + 550}}{\text{ + 550}}}}\]
On substituting \[{{\text{V}}_{CD}}{\text{ = 2}}{\text{.75 V}}\] and solving the equation we get the result as,
\[{\text{2}}{\text{.75 = }}\dfrac{{12{\text{(R + 550) }}}}{{R \times 550{\text{ + 550(R + 550)}}}}\]
Rearranging the terms we get the value of R as:
\[\therefore R{\text{ = 232}}{\text{.69 }}\Omega \]
Hence the value of R is \[{\text{232}}{\text{.69 }}\Omega \].
Note:Name all the nodes and branches for better understanding and representation of the problem. Apply voltage divider rule properly. We can also find the value of R by applying Kirchhoff’s voltage law in each branch respectively. The answer would be the same in both cases. Calculate the value of resistance R up to two decimal places only. Parallel combination of resistances is the ratio of product of all resistances and the sum of all resistances. In series combination, the value of current is the same through the same branch.
Complete step by step answer:
Let us assume current (i) flows through the \[500{\text{ }}\Omega \] resistor and the voltage drop across this resistor is given as \[2.5{\text{ V}}\]. Therefore we can find the current flowing through the \[500{\text{ }}\Omega \] resistor as:
\[{\text{i = }}\dfrac{V}{R}\]
For \[500{\text{ }}\Omega \] resistor,
\[{\text{i = }}\dfrac{{0.25{\text{ V}}}}{{500{\text{ }}\Omega }}\]
\[\Rightarrow {\text{i = 0}}{\text{.005 A}}\]
\[\Rightarrow {\text{i = 5 mA}}\]
Now the voltage across CD branch will be calculated as:
\[{{\text{V}}_{CD}}{\text{ = iR}}\]
\[\Rightarrow {{\text{V}}_{CD}}{\text{ = 5 }} \times {\text{ 1}}{{\text{0}}^{ - 3}}{\text{ }} \times {\text{ 550}}\]
\[\Rightarrow {{\text{V}}_{CD}}{\text{ = 2}}{\text{.75 V}}\]
Also by using voltage divider rule for CD branch we can write as,
\[{{\text{V}}_{CD}}{\text{ = }}\dfrac{{12{\text{ V }} \times {\text{ }}\left( {R||550} \right)}}{{R||550{\text{ + 550}}}}\] , where || denotes parallel combination of resistors
Parallel combination of R and \[550{\text{ }}\Omega \] can be calculated as:
\[{R_{eq.}}{\text{ = }}\dfrac{{R \times 550}}{{R + 550}}{\text{ }}\Omega \]
Thus on substituting the parallel combination we get the result as,
\[{{\text{V}}_{CD}}{\text{ = }}\dfrac{{12{\text{ V }} \times {\text{ }}\dfrac{{R \times 550}}{{R + 550}}}}{{\dfrac{{R \times 550}}{{R + 550}}{\text{ + 550}}}}\]
On substituting \[{{\text{V}}_{CD}}{\text{ = 2}}{\text{.75 V}}\] and solving the equation we get the result as,
\[{\text{2}}{\text{.75 = }}\dfrac{{12{\text{(R + 550) }}}}{{R \times 550{\text{ + 550(R + 550)}}}}\]
Rearranging the terms we get the value of R as:
\[\therefore R{\text{ = 232}}{\text{.69 }}\Omega \]
Hence the value of R is \[{\text{232}}{\text{.69 }}\Omega \].
Note:Name all the nodes and branches for better understanding and representation of the problem. Apply voltage divider rule properly. We can also find the value of R by applying Kirchhoff’s voltage law in each branch respectively. The answer would be the same in both cases. Calculate the value of resistance R up to two decimal places only. Parallel combination of resistances is the ratio of product of all resistances and the sum of all resistances. In series combination, the value of current is the same through the same branch.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
What is BLO What is the full form of BLO class 8 social science CBSE