Answer
Verified
464.4k+ views
Hint: The mole fraction of toluene in the vapour phase can be calculated by dividing the total pressure of the solution to the partial vapour pressure of toluene in the solution phase. We also know that the partial vapour pressure of toluene in solution phase is equal to mole fraction of toluene and vapour pressure of pure toluene.
Formula used:
\[{{ X}_{toluene}}P_{toluene}^ \circ = {P_{total}}{Y_{toluene}}\]
Here, \[{{\text{{ X}}}_{{\text{toluene}}}}\] = mole fraction of toluene in solution phase
\[{\text{P}}_{{\text{toluene}}}^{\text{o}}\] = vapour pressure of pure toluene
\[{{\text{P}}_{{\text{total}}}}\] = total pressure of solution
\[{{\text{Y}}_{{\text{toluene}}}}\] = mole fraction of toluene in vapour phase
Complete step by step answer:
At any temperature, the vapour phase of a component is always greater in the more volatile component as compared to the solution phase. We can also say that mole fraction of the more volatile component is always greater in the vapour phase than in the solution phase.
Here, we know toluene is less volatile than benzene. So, the mole fraction of toluene in the vapour phase will be less than that of mole fraction of toluene in solution phase.
Let us substitute the given values in the equation.
\[{{\rm X}_{toluene}}P_{toluene}^ \circ = {P_{total}}{Y_{toluene}}\] ……(equation 1)
Here, we are given the value of mole fraction of toluene in the solution phase.
\[{{\text{{ X}}}_{{\text{toluene}}}} = 0.50\] ……(equation 2)
We are also given the value of vapour pressure of pure toluene.
\[{\text{P}}_{{\text{toluene}}}^{\text{o}} = 37.0\] ……(equation 3)
We are not given the value of \[{{\text{P}}_{{\text{total}}}}\].
We know that the total pressure in the solution is given as:
\[{P_{total}} = P_{toluene}^ \circ {{\rm X}_{toluene}} + P_{benzene}^ \circ {{\rm X}_{benzene}}\]
Now, we know the relation of mole fraction of benzene and toluene in the solution is given as: \[{{\rm X}_{benzene}} = 1 - {{\rm X}_{toluene}}\]
So, the mole fraction of benzene becomes:
\[
{{\text{{ X}}}_{{\text{benzene}}}}{\text{ = }}1 - 0.50 \\
= 0.5 \\
\]
By substituting the values we get:
\[{{\text{P}}_{{\text{total}}}}{\text{ = 37}}{.0 \times 0}{\text{.5 + 119} \times 0}{\text{.5}}\]
By solving this equation, we will get the total pressure as:
\[{{\text{P}}_{{\text{total}}}}{\text{ = 78 torr}}\] ……(equation 4)
Now, by substituting the values of equation 2, equation 3 and equation 4 in equation 1 we get:
\[{\text{0}}{\text{.50} \times 37}{\text{.0 = 78} \times }{{\text{Y}}_{{\text{toluene}}}}\]
By multiplying left side of the above equation we get:
\[{\text{18}}{\text{.5 = 78} \times }{{\text{Y}}_{{\text{toluene}}}}\]
Now by taking numerical values on one side we get
\[{{\text{Y}}_{{\text{toluene}}}}{\text{ = }}\dfrac{{{\text{18}}{\text{.5}}}}{{{\text{78}}}}\]
We get the answer for mole fraction of toluene in the vapour phase as:
\[{{\text{Y}}_{{\text{toluene}}}}{\text{ = 0}}{\text{.237}}\]
Therefore, we can conclude that the correct answer to this question is option C.
Note:
The addition of mole fraction of two components is always equal to unity, either the components are in solution phase or vapour phase.
Formula used:
\[{{ X}_{toluene}}P_{toluene}^ \circ = {P_{total}}{Y_{toluene}}\]
Here, \[{{\text{{ X}}}_{{\text{toluene}}}}\] = mole fraction of toluene in solution phase
\[{\text{P}}_{{\text{toluene}}}^{\text{o}}\] = vapour pressure of pure toluene
\[{{\text{P}}_{{\text{total}}}}\] = total pressure of solution
\[{{\text{Y}}_{{\text{toluene}}}}\] = mole fraction of toluene in vapour phase
Complete step by step answer:
At any temperature, the vapour phase of a component is always greater in the more volatile component as compared to the solution phase. We can also say that mole fraction of the more volatile component is always greater in the vapour phase than in the solution phase.
Here, we know toluene is less volatile than benzene. So, the mole fraction of toluene in the vapour phase will be less than that of mole fraction of toluene in solution phase.
Let us substitute the given values in the equation.
\[{{\rm X}_{toluene}}P_{toluene}^ \circ = {P_{total}}{Y_{toluene}}\] ……(equation 1)
Here, we are given the value of mole fraction of toluene in the solution phase.
\[{{\text{{ X}}}_{{\text{toluene}}}} = 0.50\] ……(equation 2)
We are also given the value of vapour pressure of pure toluene.
\[{\text{P}}_{{\text{toluene}}}^{\text{o}} = 37.0\] ……(equation 3)
We are not given the value of \[{{\text{P}}_{{\text{total}}}}\].
We know that the total pressure in the solution is given as:
\[{P_{total}} = P_{toluene}^ \circ {{\rm X}_{toluene}} + P_{benzene}^ \circ {{\rm X}_{benzene}}\]
Now, we know the relation of mole fraction of benzene and toluene in the solution is given as: \[{{\rm X}_{benzene}} = 1 - {{\rm X}_{toluene}}\]
So, the mole fraction of benzene becomes:
\[
{{\text{{ X}}}_{{\text{benzene}}}}{\text{ = }}1 - 0.50 \\
= 0.5 \\
\]
By substituting the values we get:
\[{{\text{P}}_{{\text{total}}}}{\text{ = 37}}{.0 \times 0}{\text{.5 + 119} \times 0}{\text{.5}}\]
By solving this equation, we will get the total pressure as:
\[{{\text{P}}_{{\text{total}}}}{\text{ = 78 torr}}\] ……(equation 4)
Now, by substituting the values of equation 2, equation 3 and equation 4 in equation 1 we get:
\[{\text{0}}{\text{.50} \times 37}{\text{.0 = 78} \times }{{\text{Y}}_{{\text{toluene}}}}\]
By multiplying left side of the above equation we get:
\[{\text{18}}{\text{.5 = 78} \times }{{\text{Y}}_{{\text{toluene}}}}\]
Now by taking numerical values on one side we get
\[{{\text{Y}}_{{\text{toluene}}}}{\text{ = }}\dfrac{{{\text{18}}{\text{.5}}}}{{{\text{78}}}}\]
We get the answer for mole fraction of toluene in the vapour phase as:
\[{{\text{Y}}_{{\text{toluene}}}}{\text{ = 0}}{\text{.237}}\]
Therefore, we can conclude that the correct answer to this question is option C.
Note:
The addition of mole fraction of two components is always equal to unity, either the components are in solution phase or vapour phase.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE