Answer
Verified
453k+ views
Hint: Here we will use the formula to find the amount A is $A = P{\left( {1 + \dfrac{R}{{100}}} \right)^n}$ where A is the amount, P is principal, R is the rate of interest and n is the time period. Here we will take $n = 1$ for the amount after six months and $n = 2$ for the amount after one year, since the rate of interest is compounded half yearly.
Complete step-by-step answer:
Given that-
Principal, $P = \,{\text{Rs }}60,000$
Rate of interest, $R = 12\% $ per annum
$ \Rightarrow R = 6\% {\text{ }}\;per\,{\text{6 months}}$
(i)After $6$ months
Here, the interest is calculated half-yearly, $\therefore n = 6\;{\text{months = 1}}$
Place values in the formula –
$A = P{\left( {1 + \dfrac{R}{{100}}} \right)^n}$
$\therefore A = 60000 \times {\left( {1 + \dfrac{6}{{100}}} \right)^1}$
Take LCM (Least common multiple) and simplify the above equation –
$
\Rightarrow A = 60000 \times {\left( {\dfrac{{100 + 6}}{{100}}} \right)^1} \\
\Rightarrow A = 60000 \times {\left( {\dfrac{{106}}{{100}}} \right)^1} \\
$
Convert the above fraction in the decimal form-
$ \Rightarrow A = 60000 \times (10.6)$
Simplify the above equation-
$ \Rightarrow A = 63600{\text{ Rs}}{\text{.}}$
(ii)After $1$ year
Here, the interest is calculated half-yearly, $\therefore n = 12\;{\text{months = 2}}$
Place values in the formula –
$A = P{\left( {1 + \dfrac{R}{{100}}} \right)^n}$
$\therefore A = 60000 \times {\left( {1 + \dfrac{6}{{100}}} \right)^2}$
Take LCM (Least common multiple) and simplify the above equation –
$
\Rightarrow A = 60000 \times {\left( {\dfrac{{100 + 6}}{{100}}} \right)^2} \\
\Rightarrow A = 60000 \times {\left( {\dfrac{{106}}{{100}}} \right)^2} \\
$
Convert the above fraction in the decimal form-
$ \Rightarrow A = 60000 \times {(10.6)^2}$
Simplify the above equation-
$ \Rightarrow A = 67416{\text{ Rs}}{\text{.}}$
Hence, Vasudevan will get Rs. $63600$ and Rs. $67416$ respectively after six months and one year.
Note: Always convert the percentage rate of interest in the form of fraction or the decimals and then substitute further for the required solutions. Remember the difference between simple interest and compound interest and apply its concept wisely. Compound interest is the interest paid for the interest earned in the previous year. Be good in multiples and do simplification carefully. Do not forget to write the unit Rupees after calculation.
Complete step-by-step answer:
Given that-
Principal, $P = \,{\text{Rs }}60,000$
Rate of interest, $R = 12\% $ per annum
$ \Rightarrow R = 6\% {\text{ }}\;per\,{\text{6 months}}$
(i)After $6$ months
Here, the interest is calculated half-yearly, $\therefore n = 6\;{\text{months = 1}}$
Place values in the formula –
$A = P{\left( {1 + \dfrac{R}{{100}}} \right)^n}$
$\therefore A = 60000 \times {\left( {1 + \dfrac{6}{{100}}} \right)^1}$
Take LCM (Least common multiple) and simplify the above equation –
$
\Rightarrow A = 60000 \times {\left( {\dfrac{{100 + 6}}{{100}}} \right)^1} \\
\Rightarrow A = 60000 \times {\left( {\dfrac{{106}}{{100}}} \right)^1} \\
$
Convert the above fraction in the decimal form-
$ \Rightarrow A = 60000 \times (10.6)$
Simplify the above equation-
$ \Rightarrow A = 63600{\text{ Rs}}{\text{.}}$
(ii)After $1$ year
Here, the interest is calculated half-yearly, $\therefore n = 12\;{\text{months = 2}}$
Place values in the formula –
$A = P{\left( {1 + \dfrac{R}{{100}}} \right)^n}$
$\therefore A = 60000 \times {\left( {1 + \dfrac{6}{{100}}} \right)^2}$
Take LCM (Least common multiple) and simplify the above equation –
$
\Rightarrow A = 60000 \times {\left( {\dfrac{{100 + 6}}{{100}}} \right)^2} \\
\Rightarrow A = 60000 \times {\left( {\dfrac{{106}}{{100}}} \right)^2} \\
$
Convert the above fraction in the decimal form-
$ \Rightarrow A = 60000 \times {(10.6)^2}$
Simplify the above equation-
$ \Rightarrow A = 67416{\text{ Rs}}{\text{.}}$
Hence, Vasudevan will get Rs. $63600$ and Rs. $67416$ respectively after six months and one year.
Note: Always convert the percentage rate of interest in the form of fraction or the decimals and then substitute further for the required solutions. Remember the difference between simple interest and compound interest and apply its concept wisely. Compound interest is the interest paid for the interest earned in the previous year. Be good in multiples and do simplification carefully. Do not forget to write the unit Rupees after calculation.
Recently Updated Pages
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
For which of the following reactions H is equal to class 11 chemistry JEE_Main
For the redox reaction MnO4 + C2O42 + H + to Mn2 + class 11 chemistry JEE_Main
In the reaction 2FeCl3 + H2S to 2FeCl2 + 2HCl + S class 11 chemistry JEE_Main
One mole of a nonideal gas undergoes a change of state class 11 chemistry JEE_Main
A stone is projected with speed 20 ms at angle 37circ class 11 physics JEE_Main
Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Fill in the blanks with appropriate modals a Drivers class 7 english CBSE
What are the controls affecting the climate of Ind class 7 social science CBSE
Welcome speech for Christmas day celebration class 7 english CBSE
The southernmost point of the Indian mainland is known class 7 social studies CBSE
What were the major teachings of Baba Guru Nanak class 7 social science CBSE