Answer
Verified
441.6k+ views
Hint : Addition of two or more vectors takes place in the same place while the result of the cross product of two vectors lies perpendicular to the plane of these two vectors.
Complete step by step answer
From the question, we know that the relation between vectors C, A and B is $ {\rm{\vec C}} = {\rm{\vec A}} + {\rm{\vec B}} $ and the relation between vectors D, A and B is $ {\rm{\vec D}} = {\rm{\vec A}} \times {\rm{\vec B}} $ .
We now know that the result of the addition of two or more vectors lies in the same plane. So, $ {\rm{\vec C}} $ lies in the same plane as $ {\rm{\vec A}} $ and $ {\rm{\vec B}} $ .
Also, we know that the result of the cross product of two vectors lies in the perpendicular to the plane of these two vectors. So, $ {\rm{\vec D}} $ lies perpendicular to the plane of $ {\rm{\vec A}} $ and $ {\rm{\vec B}} $ .
Since $ {\rm{\vec C}} $ lies in the same plane as of $ {\rm{\vec A}} $ and $ {\rm{\vec B}} $ , so $ {\rm{\vec D}} $ is perpendicular to the $ {\rm{\vec C}} $ .
Hence, the angle between $ {\rm{\vec C}} $ and $ {\rm{\vec D}} $ is equal to $ 90^\circ $ and the option (C) is correct.
Note
Cross product is defined as the vector whose magnitude is equal to the product of the magnitude of two vectors and sine of the angle of between the two vectors and its direction is perpendicular to the plane in which the two vectors lie and it can be obtained by using the right hand rule.
Mathematically, suppose $ {\rm{\vec A}} $ and $ {\rm{\vec B}} $ are two vectors having $ \theta $ angle between them,
$ {\rm{\vec A}} \times {\rm{\vec B}} = \left| A \right|\left| B \right|\sin \theta $ .
Complete step by step answer
From the question, we know that the relation between vectors C, A and B is $ {\rm{\vec C}} = {\rm{\vec A}} + {\rm{\vec B}} $ and the relation between vectors D, A and B is $ {\rm{\vec D}} = {\rm{\vec A}} \times {\rm{\vec B}} $ .
We now know that the result of the addition of two or more vectors lies in the same plane. So, $ {\rm{\vec C}} $ lies in the same plane as $ {\rm{\vec A}} $ and $ {\rm{\vec B}} $ .
Also, we know that the result of the cross product of two vectors lies in the perpendicular to the plane of these two vectors. So, $ {\rm{\vec D}} $ lies perpendicular to the plane of $ {\rm{\vec A}} $ and $ {\rm{\vec B}} $ .
Since $ {\rm{\vec C}} $ lies in the same plane as of $ {\rm{\vec A}} $ and $ {\rm{\vec B}} $ , so $ {\rm{\vec D}} $ is perpendicular to the $ {\rm{\vec C}} $ .
Hence, the angle between $ {\rm{\vec C}} $ and $ {\rm{\vec D}} $ is equal to $ 90^\circ $ and the option (C) is correct.
Note
Cross product is defined as the vector whose magnitude is equal to the product of the magnitude of two vectors and sine of the angle of between the two vectors and its direction is perpendicular to the plane in which the two vectors lie and it can be obtained by using the right hand rule.
Mathematically, suppose $ {\rm{\vec A}} $ and $ {\rm{\vec B}} $ are two vectors having $ \theta $ angle between them,
$ {\rm{\vec A}} \times {\rm{\vec B}} = \left| A \right|\left| B \right|\sin \theta $ .
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers