Vector C is the sum of two vectors A and B and vector D is the cross product of vectors A and B. What is the angle between vectors C and D?
(A) Zero
(B) $ 60^\circ $
(C) $ 90^\circ $
(D) $ 180^\circ $
Answer
Verified
455.1k+ views
Hint : Addition of two or more vectors takes place in the same place while the result of the cross product of two vectors lies perpendicular to the plane of these two vectors.
Complete step by step answer
From the question, we know that the relation between vectors C, A and B is $ {\rm{\vec C}} = {\rm{\vec A}} + {\rm{\vec B}} $ and the relation between vectors D, A and B is $ {\rm{\vec D}} = {\rm{\vec A}} \times {\rm{\vec B}} $ .
We now know that the result of the addition of two or more vectors lies in the same plane. So, $ {\rm{\vec C}} $ lies in the same plane as $ {\rm{\vec A}} $ and $ {\rm{\vec B}} $ .
Also, we know that the result of the cross product of two vectors lies in the perpendicular to the plane of these two vectors. So, $ {\rm{\vec D}} $ lies perpendicular to the plane of $ {\rm{\vec A}} $ and $ {\rm{\vec B}} $ .
Since $ {\rm{\vec C}} $ lies in the same plane as of $ {\rm{\vec A}} $ and $ {\rm{\vec B}} $ , so $ {\rm{\vec D}} $ is perpendicular to the $ {\rm{\vec C}} $ .
Hence, the angle between $ {\rm{\vec C}} $ and $ {\rm{\vec D}} $ is equal to $ 90^\circ $ and the option (C) is correct.
Note
Cross product is defined as the vector whose magnitude is equal to the product of the magnitude of two vectors and sine of the angle of between the two vectors and its direction is perpendicular to the plane in which the two vectors lie and it can be obtained by using the right hand rule.
Mathematically, suppose $ {\rm{\vec A}} $ and $ {\rm{\vec B}} $ are two vectors having $ \theta $ angle between them,
$ {\rm{\vec A}} \times {\rm{\vec B}} = \left| A \right|\left| B \right|\sin \theta $ .
Complete step by step answer
From the question, we know that the relation between vectors C, A and B is $ {\rm{\vec C}} = {\rm{\vec A}} + {\rm{\vec B}} $ and the relation between vectors D, A and B is $ {\rm{\vec D}} = {\rm{\vec A}} \times {\rm{\vec B}} $ .
We now know that the result of the addition of two or more vectors lies in the same plane. So, $ {\rm{\vec C}} $ lies in the same plane as $ {\rm{\vec A}} $ and $ {\rm{\vec B}} $ .
Also, we know that the result of the cross product of two vectors lies in the perpendicular to the plane of these two vectors. So, $ {\rm{\vec D}} $ lies perpendicular to the plane of $ {\rm{\vec A}} $ and $ {\rm{\vec B}} $ .
Since $ {\rm{\vec C}} $ lies in the same plane as of $ {\rm{\vec A}} $ and $ {\rm{\vec B}} $ , so $ {\rm{\vec D}} $ is perpendicular to the $ {\rm{\vec C}} $ .
Hence, the angle between $ {\rm{\vec C}} $ and $ {\rm{\vec D}} $ is equal to $ 90^\circ $ and the option (C) is correct.
Note
Cross product is defined as the vector whose magnitude is equal to the product of the magnitude of two vectors and sine of the angle of between the two vectors and its direction is perpendicular to the plane in which the two vectors lie and it can be obtained by using the right hand rule.
Mathematically, suppose $ {\rm{\vec A}} $ and $ {\rm{\vec B}} $ are two vectors having $ \theta $ angle between them,
$ {\rm{\vec A}} \times {\rm{\vec B}} = \left| A \right|\left| B \right|\sin \theta $ .
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE