Answer
Verified
425.1k+ views
Hint: We need to understand the working of the dot products or the scalar multiplication and the vector or cross products in order to understand and then find the actual relation and the conversions involved between the two types to solve this problem.
Complete step by step solution:
We are given the relation between the vector triple product and the scalar multiplication.
The vector product can be easily calculated using the given relation which involves the dot products and normal multiplication.
In order to solve this, we need to know that the dot product becomes zero, when the vectors are perpendicular to each other and will be the square of the magnitudes when both are the same.
So, let us consider the given situation. It is given that –
\[\overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{c})=(\overrightarrow{a}.\overrightarrow{c})\overrightarrow{b}-(\overrightarrow{a}.\overrightarrow{b})\overrightarrow{c}\]
But,
\[\overrightarrow{a}=\overrightarrow{c}\]
Therefore, the above relation can be rewritten as –
\[\begin{align}
& \overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{a})=(\overrightarrow{a}.\overrightarrow{a})\overrightarrow{b}-(\overrightarrow{a}.\overrightarrow{b})\overrightarrow{a} \\
& \therefore \overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{a})={{a}^{2}}\overrightarrow{b}-(\overrightarrow{a}.\overrightarrow{b})\overrightarrow{a} \\
\end{align}\]
Now, we can see that the triple product doesn’t become zero in all cases.
When, \[\overrightarrow{a}\bot \overrightarrow{b}\], the product becomes –
\[\begin{align}
& \overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{a})={{a}^{2}}\overrightarrow{b}-(\overrightarrow{a}.\overrightarrow{b})\overrightarrow{a} \\
& \therefore \overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{a})={{a}^{2}}\overrightarrow{b}-0 \\
\end{align}\]
i.e., the vector triple product will be vector parallel to the vector ‘b’ with a magnitude of \[{{a}^{2}}\].
Now, in this case, the vector product will be coplanar with the vectors \[\overrightarrow{a}\text{ and }\overrightarrow{b}\], as they are a linear combination. This rules out the chance of this vector product being normal to \[\overrightarrow{a}\text{ and }\overrightarrow{b}\].
This is the required solution.
The correct answers are option B and C.
Note:
The vector triple product can only exist if the vector which is perpendicular to the vectors ‘b’ and ‘c’ has a component that is perpendicular to the vector ‘a’. In all other cases, the triple vector product will turn out to be zero and will therefore produce a null vector.
Complete step by step solution:
We are given the relation between the vector triple product and the scalar multiplication.
The vector product can be easily calculated using the given relation which involves the dot products and normal multiplication.
In order to solve this, we need to know that the dot product becomes zero, when the vectors are perpendicular to each other and will be the square of the magnitudes when both are the same.
So, let us consider the given situation. It is given that –
\[\overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{c})=(\overrightarrow{a}.\overrightarrow{c})\overrightarrow{b}-(\overrightarrow{a}.\overrightarrow{b})\overrightarrow{c}\]
But,
\[\overrightarrow{a}=\overrightarrow{c}\]
Therefore, the above relation can be rewritten as –
\[\begin{align}
& \overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{a})=(\overrightarrow{a}.\overrightarrow{a})\overrightarrow{b}-(\overrightarrow{a}.\overrightarrow{b})\overrightarrow{a} \\
& \therefore \overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{a})={{a}^{2}}\overrightarrow{b}-(\overrightarrow{a}.\overrightarrow{b})\overrightarrow{a} \\
\end{align}\]
Now, we can see that the triple product doesn’t become zero in all cases.
When, \[\overrightarrow{a}\bot \overrightarrow{b}\], the product becomes –
\[\begin{align}
& \overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{a})={{a}^{2}}\overrightarrow{b}-(\overrightarrow{a}.\overrightarrow{b})\overrightarrow{a} \\
& \therefore \overrightarrow{a}\times (\overrightarrow{b}\times \overrightarrow{a})={{a}^{2}}\overrightarrow{b}-0 \\
\end{align}\]
i.e., the vector triple product will be vector parallel to the vector ‘b’ with a magnitude of \[{{a}^{2}}\].
Now, in this case, the vector product will be coplanar with the vectors \[\overrightarrow{a}\text{ and }\overrightarrow{b}\], as they are a linear combination. This rules out the chance of this vector product being normal to \[\overrightarrow{a}\text{ and }\overrightarrow{b}\].
This is the required solution.
The correct answers are option B and C.
Note:
The vector triple product can only exist if the vector which is perpendicular to the vectors ‘b’ and ‘c’ has a component that is perpendicular to the vector ‘a’. In all other cases, the triple vector product will turn out to be zero and will therefore produce a null vector.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE