Verify Rolle’s Theorem for the function $y = {x^2} + 2$ where $x \in \left[ { - 2,2} \right].$
Answer
Verified
504.9k+ views
Hint: Rolle’s Theorem states that if a function f is continuous on the closed interval [a, b] and differentiable on the open interval (a, b) such that f(a)=f(b), then$f'(x) = 0$ for some x, $a \leqslant x \leqslant b$.
Given function is $y = {x^2} + 2$ and x belongs to [-2, 2]
Here y is a function of x $ \Rightarrow y = f(x)$
The given function f(x) is continuous on a closed interval [-2, 2] and differentiable on an open interval (-2, 2).
We have f (2) = f (-2) = 6
According to Rolle’s Theorem, if f (-2) = f (2) then there exists at least one point c in (-2, 2) such that $f'(c) = 0$
Now, to check whether such c exists or not
We have $f'(x) = 2x$
$f'(x) = 2x = 0$ for x = 0, and -2 < 0 < 2
Hence, there exist $0 \in \left( { - 2,2} \right)$ such that $f'(0) = 0$
Therefore, Rolle’s Theorem is verified.
Note:While verifying Rolle’s Theorem for a function, we need to make sure that it is satisfying all the three rules of Rolle’s Theorem. If any of those conditions failed then, we can say that Rolle’s Theorem is not applicable for that function.
Function is continuous means its graph is unbroken without any holes (discontinuity). Function must be defined at every point of the given interval.
Given function is $y = {x^2} + 2$ and x belongs to [-2, 2]
Here y is a function of x $ \Rightarrow y = f(x)$
The given function f(x) is continuous on a closed interval [-2, 2] and differentiable on an open interval (-2, 2).
We have f (2) = f (-2) = 6
According to Rolle’s Theorem, if f (-2) = f (2) then there exists at least one point c in (-2, 2) such that $f'(c) = 0$
Now, to check whether such c exists or not
We have $f'(x) = 2x$
$f'(x) = 2x = 0$ for x = 0, and -2 < 0 < 2
Hence, there exist $0 \in \left( { - 2,2} \right)$ such that $f'(0) = 0$
Therefore, Rolle’s Theorem is verified.
Note:While verifying Rolle’s Theorem for a function, we need to make sure that it is satisfying all the three rules of Rolle’s Theorem. If any of those conditions failed then, we can say that Rolle’s Theorem is not applicable for that function.
Function is continuous means its graph is unbroken without any holes (discontinuity). Function must be defined at every point of the given interval.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
What are the major means of transport Explain each class 12 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE