Answer
Verified
469.2k+ views
Hint: Vibration magnetometer is an instrument used to compare the magnetic moments of two magnets or to determine the horizontal component of the Earth’s magnetic field. When a magnet suspended in a uniform magnetic field (like the one due to earth’s) is displaced from its equilibrium position and it begins to vibrate simply harmonically about the direction of the field.
Formula used:
The time period of vibration magnetometer is given by
\[T=2\pi \sqrt{\dfrac{I}{m{{B}_{H}}}}\], where
$\begin{align}
& m=\text{ magnetic moment of the magnet taken} \\
& {{B}_{H}}=\text{ the horizontal component of earth }\!\!'\!\!\text{ s magnetic field} \\
& I=\text{ the moment of inertia of the magnet about an axis of rotation about its center of mass} \\
& I=\text{Mass of the magnet}\times \dfrac{{{l}^{2}}+{{b}^{2}}}{12} \\
& l\text{ and }b\text{ are the length and bredth of the magnet} \\
\end{align}$
Complete answer:
When a bar magnet is placed in an uniform magnetic field then it will experience a force in the direction of the field due to which the bar magnet will rotate and will try to align with the magnetic field.
The magnet will experience a torque which will rotate the magnet and will try to align with the field due to the rotational inertia the bar magnet will execute simple harmonic motion.
i.e. A vibration magnetometer works on the principle of torque acting on bar magnet and rotational inertia.
So, the correct answer is “Option A”.
Additional Information:
Torque acting on the dipole will be $\tau =m{{B}_{H}}(2l\sin \theta )=2ml{{B}_{H}}\sin \theta =M{{B}_{H}}\sin \theta $
Where
$\begin{align}
& 2l=\text{ length of the bar magnet}\text{.} \\
& \text{M=}2ml=\text{ magnetic dipole moment} \\
\end{align}$
For small $\theta$,$\tau =M{{B}_{H}}\theta $
If $\alpha =\text{ angular acceleration and }I=\text{ moment of inertia}$, then
${{I}_{\alpha }}=M{{B}_{H}}\theta $
So time period of oscillation is
\[T=2\pi \sqrt{\dfrac{I\theta }{{{I}_{\alpha }}}}=2\pi \sqrt{\dfrac{I}{M{{B}_{H}}}}\]
Calculating the horizontal component of earth’s magnetic field:
With the help of a vibration magnetometer we can measure the time period of say $T\text{ and }T'$ of vibration of the same magnet at two given places. Let ${{B}_{H}}\text{ and }{{B}_{H}}'$ are the horizontal component of earth’s magnetic field at these places. Then
\[\begin{align}
& T=2\pi \sqrt{\dfrac{I}{M{{B}_{H}}}}\text{ and }T'=2\pi \sqrt{\dfrac{I}{M{{B}_{H}}}} \\
& \Rightarrow \dfrac{T}{T'}=\sqrt{\dfrac{{{B}_{H}}'}{{{B}_{H}}}} \\
& \Rightarrow \dfrac{{{B}_{H}}}{{{B}_{H}}'}=\dfrac{T{{'}^{2}}}{{{T}^{2}}} \\
\end{align}\]
Note:
Vibration magnetometer works on the principle of torque and rotation in the uniform magnetic field. If the field is non-uniform or the field is very strong the magnet will not oscillate and will stop when aligned with the field. So the vibration magnetometer only works when the field is uniform and not very strong.
Formula used:
The time period of vibration magnetometer is given by
\[T=2\pi \sqrt{\dfrac{I}{m{{B}_{H}}}}\], where
$\begin{align}
& m=\text{ magnetic moment of the magnet taken} \\
& {{B}_{H}}=\text{ the horizontal component of earth }\!\!'\!\!\text{ s magnetic field} \\
& I=\text{ the moment of inertia of the magnet about an axis of rotation about its center of mass} \\
& I=\text{Mass of the magnet}\times \dfrac{{{l}^{2}}+{{b}^{2}}}{12} \\
& l\text{ and }b\text{ are the length and bredth of the magnet} \\
\end{align}$
Complete answer:
When a bar magnet is placed in an uniform magnetic field then it will experience a force in the direction of the field due to which the bar magnet will rotate and will try to align with the magnetic field.
The magnet will experience a torque which will rotate the magnet and will try to align with the field due to the rotational inertia the bar magnet will execute simple harmonic motion.
i.e. A vibration magnetometer works on the principle of torque acting on bar magnet and rotational inertia.
So, the correct answer is “Option A”.
Additional Information:
Torque acting on the dipole will be $\tau =m{{B}_{H}}(2l\sin \theta )=2ml{{B}_{H}}\sin \theta =M{{B}_{H}}\sin \theta $
Where
$\begin{align}
& 2l=\text{ length of the bar magnet}\text{.} \\
& \text{M=}2ml=\text{ magnetic dipole moment} \\
\end{align}$
For small $\theta$,$\tau =M{{B}_{H}}\theta $
If $\alpha =\text{ angular acceleration and }I=\text{ moment of inertia}$, then
${{I}_{\alpha }}=M{{B}_{H}}\theta $
So time period of oscillation is
\[T=2\pi \sqrt{\dfrac{I\theta }{{{I}_{\alpha }}}}=2\pi \sqrt{\dfrac{I}{M{{B}_{H}}}}\]
Calculating the horizontal component of earth’s magnetic field:
With the help of a vibration magnetometer we can measure the time period of say $T\text{ and }T'$ of vibration of the same magnet at two given places. Let ${{B}_{H}}\text{ and }{{B}_{H}}'$ are the horizontal component of earth’s magnetic field at these places. Then
\[\begin{align}
& T=2\pi \sqrt{\dfrac{I}{M{{B}_{H}}}}\text{ and }T'=2\pi \sqrt{\dfrac{I}{M{{B}_{H}}}} \\
& \Rightarrow \dfrac{T}{T'}=\sqrt{\dfrac{{{B}_{H}}'}{{{B}_{H}}}} \\
& \Rightarrow \dfrac{{{B}_{H}}}{{{B}_{H}}'}=\dfrac{T{{'}^{2}}}{{{T}^{2}}} \\
\end{align}\]
Note:
Vibration magnetometer works on the principle of torque and rotation in the uniform magnetic field. If the field is non-uniform or the field is very strong the magnet will not oscillate and will stop when aligned with the field. So the vibration magnetometer only works when the field is uniform and not very strong.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE