Answer
Verified
419.7k+ views
Hint: Here, we are required to arrange the letters in the given word ‘FACTOR’. Thus, we will use Permutations to ‘arrange’ the letters keeping in mind that all the letters in the given word are unique. Thus, applying the formula and solving the factorial, we will be able to find the required ways of arrangement of letters of the given word.
Formula Used:
We will use the following formulas:
1. ${}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}$ , where $n$ is the total number of letters and $r$ represents the number of letters to be arranged.
2. $n! = n \times \left( {n - 1} \right) \times \left( {n - 2} \right) \times ...... \times 3 \times 2 \times 1$.
Complete step-by-step answer:
In order to find the arrangement of the word ‘FACTOR’,
First of all, we will observe that all the letters in this given word are unique and no word is the same or duplicate. Also, the number of letters in the word ‘FACTOR’ is 6.
Therefore, we will use Permutations to ‘arrange’ the 6 letters of the given word.
Thus, the formula is ${}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}$
Where, $n$ is the total number of letters and $r$ represents the number of letters to be arranged, i.e. $6$ in each case.
Thus, we get,
${}^6{P_6} = \dfrac{{6!}}{{\left( {6 - 6} \right)!}} = \dfrac{{6!}}{{0!}} = 6!$
Because, $0! = 1$
Now, the formula of expanding factorial is $n! = n \times \left( {n - 1} \right) \times \left( {n - 2} \right) \times ...... \times 3 \times 2 \times 1$.
Hence, we get,
$6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 30 \times 24 = 720$
Therefore, we can arrange the letters in the word ‘FACTOR’ in 720 ways.
Thus, this is the required answer.
Note:
While solving this question, we should know the difference between permutations and combinations. Permutation is an act of arranging the numbers whereas combination is a method of selecting a group of numbers or elements in any order. Hence, Permutations and Combinations play a vital role to solve these types of questions. . Also, in order to answer this question, we should know that when we open a factorial then, we write it in the form of: $n! = n \times \left( {n - 1} \right) \times \left( {n - 2} \right) \times ...... \times 3 \times 2 \times 1$ as by factorial we mean that it a product of all the positive integers which are less than or equal to the given number but not less than 1.
Formula Used:
We will use the following formulas:
1. ${}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}$ , where $n$ is the total number of letters and $r$ represents the number of letters to be arranged.
2. $n! = n \times \left( {n - 1} \right) \times \left( {n - 2} \right) \times ...... \times 3 \times 2 \times 1$.
Complete step-by-step answer:
In order to find the arrangement of the word ‘FACTOR’,
First of all, we will observe that all the letters in this given word are unique and no word is the same or duplicate. Also, the number of letters in the word ‘FACTOR’ is 6.
Therefore, we will use Permutations to ‘arrange’ the 6 letters of the given word.
Thus, the formula is ${}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}$
Where, $n$ is the total number of letters and $r$ represents the number of letters to be arranged, i.e. $6$ in each case.
Thus, we get,
${}^6{P_6} = \dfrac{{6!}}{{\left( {6 - 6} \right)!}} = \dfrac{{6!}}{{0!}} = 6!$
Because, $0! = 1$
Now, the formula of expanding factorial is $n! = n \times \left( {n - 1} \right) \times \left( {n - 2} \right) \times ...... \times 3 \times 2 \times 1$.
Hence, we get,
$6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 30 \times 24 = 720$
Therefore, we can arrange the letters in the word ‘FACTOR’ in 720 ways.
Thus, this is the required answer.
Note:
While solving this question, we should know the difference between permutations and combinations. Permutation is an act of arranging the numbers whereas combination is a method of selecting a group of numbers or elements in any order. Hence, Permutations and Combinations play a vital role to solve these types of questions. . Also, in order to answer this question, we should know that when we open a factorial then, we write it in the form of: $n! = n \times \left( {n - 1} \right) \times \left( {n - 2} \right) \times ...... \times 3 \times 2 \times 1$ as by factorial we mean that it a product of all the positive integers which are less than or equal to the given number but not less than 1.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE