
What is the antiderivative of \[{{\sec }^{2}}(x)\]?
Answer
432.3k+ views
Hint: From the question given we have to find the antiderivative of \[{{\sec }^{2}}(x)\]. Generally, antiderivatives are opposite to the derivatives (inverse derivatives). We know that the derivative of\[~\tan (x)\] is \[{{\sec }^{2}}(x)\]
We need to find the antiderivative of \[{{\sec }^{2}}(x)\]. Antiderivative means integral. From this we will get the antiderivative of \[{{\sec }^{2}}(x)\].
Complete step by step solution:
Generally, antiderivatives are opposite to the derivatives (inverse derivatives).
We know that the derivative of\[~\tan (x)\] is \[{{\sec }^{2}}(x)\]
We need to find the antiderivative of \[{{\sec }^{2}}(x)\].
\[\Rightarrow \]\[\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}(x)\]
From the above equation it is clear that the derivative of \[~\tan (x)\] is \[{{\sec }^{2}}(x)\].
We know that the antiderivatives are inverse derivatives of the derivatives.
So, it is very clear that the antiderivative of the \[{{\sec }^{2}}(x)\] becomes\[~\tan (x)\].
\[\Rightarrow \]\[\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}(x)\]
\[\Rightarrow \]\[\tan x=\int{{{\sec }^{2}}}(x)+c\].
Integral is nothing but the antiderivative.
\[\Rightarrow \int{{{\sec }^{^{2}}}}(x)=\tan x+c\]
Here c is some constant value.
So, the antiderivative of the \[{{\sec }^{2}}(x)\] becomes\[~\tan (x)\].
Antiderivative of \[{{\sec }^{2}}(x)\] is\[~\tan (x)\]+c.
Antiderivative of \[{{\sec }^{2}}(x)\]= \[~\tan (x)\]+c
\[\Rightarrow \]\[\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}(x)\]
\[\Rightarrow \] \[\int{{{\sec }^{^{2}}}}(x)=\tan (x)+c\]
Antiderivative is \[~\tan (x)\]+c.
So, the antiderivative of \[{{\sec }^{2}}(x)\] is \[~\tan (x)\]+c.
Note: Students must know the basis derivatives of trigonometric functions like:
\[\Rightarrow \dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}(x)\]
\[\Rightarrow \dfrac{d}{dx}\left( \sin x \right)=\cos x\]
\[\Rightarrow \dfrac{d}{dx}\left( \cos x \right)=-\sin x\]
Students must know the concept of antiderivative. Students must be very careful while doing the calculations.
We need to find the antiderivative of \[{{\sec }^{2}}(x)\]. Antiderivative means integral. From this we will get the antiderivative of \[{{\sec }^{2}}(x)\].
Complete step by step solution:
Generally, antiderivatives are opposite to the derivatives (inverse derivatives).
We know that the derivative of\[~\tan (x)\] is \[{{\sec }^{2}}(x)\]
We need to find the antiderivative of \[{{\sec }^{2}}(x)\].
\[\Rightarrow \]\[\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}(x)\]
From the above equation it is clear that the derivative of \[~\tan (x)\] is \[{{\sec }^{2}}(x)\].
We know that the antiderivatives are inverse derivatives of the derivatives.
So, it is very clear that the antiderivative of the \[{{\sec }^{2}}(x)\] becomes\[~\tan (x)\].
\[\Rightarrow \]\[\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}(x)\]
\[\Rightarrow \]\[\tan x=\int{{{\sec }^{2}}}(x)+c\].
Integral is nothing but the antiderivative.
\[\Rightarrow \int{{{\sec }^{^{2}}}}(x)=\tan x+c\]
Here c is some constant value.
So, the antiderivative of the \[{{\sec }^{2}}(x)\] becomes\[~\tan (x)\].
Antiderivative of \[{{\sec }^{2}}(x)\] is\[~\tan (x)\]+c.
Antiderivative of \[{{\sec }^{2}}(x)\]= \[~\tan (x)\]+c
\[\Rightarrow \]\[\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}(x)\]
\[\Rightarrow \] \[\int{{{\sec }^{^{2}}}}(x)=\tan (x)+c\]
Antiderivative is \[~\tan (x)\]+c.
So, the antiderivative of \[{{\sec }^{2}}(x)\] is \[~\tan (x)\]+c.
Note: Students must know the basis derivatives of trigonometric functions like:
\[\Rightarrow \dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}(x)\]
\[\Rightarrow \dfrac{d}{dx}\left( \sin x \right)=\cos x\]
\[\Rightarrow \dfrac{d}{dx}\left( \cos x \right)=-\sin x\]
Students must know the concept of antiderivative. Students must be very careful while doing the calculations.
Recently Updated Pages
How do you factor x2 + x 20 0 class 9 maths CBSE

How do you solve y6x and 2x+3y20 using substitutio class 9 maths CBSE

Chipko movement originated in Gopeshwar in A 1953 B class 9 biology CBSE

The adjacent sides in the parallelogram are supplementary class 9 maths CBSE

The compound used in plastic industry is A Vinyl acetate class 9 chemistry CBSE

How do you solve for y in 2left y dfrac12 right 4left class 9 maths CBSE

Trending doubts
Types of lever in which effort is in between fulcrum class 12 physics CBSE

Distinguish between esterification and saponification class 12 chemistry CBSE

Which are the Top 10 Largest Countries of the World?

A two input XOR Gate produces a high output only when class 12 physics CBSE

Give five points to show the significance of varia class 12 biology CBSE

Which is the correct genotypic ratio of mendel dihybrid class 12 biology CBSE
