Answer
Verified
397.5k+ views
Hint: From the question given we have to find the antiderivative of \[{{\sec }^{2}}(x)\]. Generally, antiderivatives are opposite to the derivatives (inverse derivatives). We know that the derivative of\[~\tan (x)\] is \[{{\sec }^{2}}(x)\]
We need to find the antiderivative of \[{{\sec }^{2}}(x)\]. Antiderivative means integral. From this we will get the antiderivative of \[{{\sec }^{2}}(x)\].
Complete step by step solution:
Generally, antiderivatives are opposite to the derivatives (inverse derivatives).
We know that the derivative of\[~\tan (x)\] is \[{{\sec }^{2}}(x)\]
We need to find the antiderivative of \[{{\sec }^{2}}(x)\].
\[\Rightarrow \]\[\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}(x)\]
From the above equation it is clear that the derivative of \[~\tan (x)\] is \[{{\sec }^{2}}(x)\].
We know that the antiderivatives are inverse derivatives of the derivatives.
So, it is very clear that the antiderivative of the \[{{\sec }^{2}}(x)\] becomes\[~\tan (x)\].
\[\Rightarrow \]\[\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}(x)\]
\[\Rightarrow \]\[\tan x=\int{{{\sec }^{2}}}(x)+c\].
Integral is nothing but the antiderivative.
\[\Rightarrow \int{{{\sec }^{^{2}}}}(x)=\tan x+c\]
Here c is some constant value.
So, the antiderivative of the \[{{\sec }^{2}}(x)\] becomes\[~\tan (x)\].
Antiderivative of \[{{\sec }^{2}}(x)\] is\[~\tan (x)\]+c.
Antiderivative of \[{{\sec }^{2}}(x)\]= \[~\tan (x)\]+c
\[\Rightarrow \]\[\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}(x)\]
\[\Rightarrow \] \[\int{{{\sec }^{^{2}}}}(x)=\tan (x)+c\]
Antiderivative is \[~\tan (x)\]+c.
So, the antiderivative of \[{{\sec }^{2}}(x)\] is \[~\tan (x)\]+c.
Note: Students must know the basis derivatives of trigonometric functions like:
\[\Rightarrow \dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}(x)\]
\[\Rightarrow \dfrac{d}{dx}\left( \sin x \right)=\cos x\]
\[\Rightarrow \dfrac{d}{dx}\left( \cos x \right)=-\sin x\]
Students must know the concept of antiderivative. Students must be very careful while doing the calculations.
We need to find the antiderivative of \[{{\sec }^{2}}(x)\]. Antiderivative means integral. From this we will get the antiderivative of \[{{\sec }^{2}}(x)\].
Complete step by step solution:
Generally, antiderivatives are opposite to the derivatives (inverse derivatives).
We know that the derivative of\[~\tan (x)\] is \[{{\sec }^{2}}(x)\]
We need to find the antiderivative of \[{{\sec }^{2}}(x)\].
\[\Rightarrow \]\[\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}(x)\]
From the above equation it is clear that the derivative of \[~\tan (x)\] is \[{{\sec }^{2}}(x)\].
We know that the antiderivatives are inverse derivatives of the derivatives.
So, it is very clear that the antiderivative of the \[{{\sec }^{2}}(x)\] becomes\[~\tan (x)\].
\[\Rightarrow \]\[\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}(x)\]
\[\Rightarrow \]\[\tan x=\int{{{\sec }^{2}}}(x)+c\].
Integral is nothing but the antiderivative.
\[\Rightarrow \int{{{\sec }^{^{2}}}}(x)=\tan x+c\]
Here c is some constant value.
So, the antiderivative of the \[{{\sec }^{2}}(x)\] becomes\[~\tan (x)\].
Antiderivative of \[{{\sec }^{2}}(x)\] is\[~\tan (x)\]+c.
Antiderivative of \[{{\sec }^{2}}(x)\]= \[~\tan (x)\]+c
\[\Rightarrow \]\[\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}(x)\]
\[\Rightarrow \] \[\int{{{\sec }^{^{2}}}}(x)=\tan (x)+c\]
Antiderivative is \[~\tan (x)\]+c.
So, the antiderivative of \[{{\sec }^{2}}(x)\] is \[~\tan (x)\]+c.
Note: Students must know the basis derivatives of trigonometric functions like:
\[\Rightarrow \dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}(x)\]
\[\Rightarrow \dfrac{d}{dx}\left( \sin x \right)=\cos x\]
\[\Rightarrow \dfrac{d}{dx}\left( \cos x \right)=-\sin x\]
Students must know the concept of antiderivative. Students must be very careful while doing the calculations.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
The states of India which do not have an International class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Name the three parallel ranges of the Himalayas Describe class 9 social science CBSE