
What is the derivative of $\sec x$?
Answer
522.9k+ views
Hint: In this question we have been asked to find the derivative of the given trigonometric function $\sec x$. We will first rewrite the expression in the form of $\cos x$ and then we will use the formula of the derivative of the term in the form of $\dfrac{u}{v}$. We will use the formula $\dfrac{d}{dx}\dfrac{u}{v}=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}$ and simplify the terms to get the required solution.
Complete step-by-step solution:
We have the term given to us as:
$\Rightarrow \sec x$
Since we have to find the derivative of the term, it can be written as:
$\Rightarrow \dfrac{d}{dx}\sec x$
Now we know that $\sec x=\dfrac{1}{\cos x}$ therefore, on substituting, we get:
$\Rightarrow \dfrac{d}{dx}\dfrac{1}{\cos x}$
We can see that the expression is in the form of the derivative of $\dfrac{u}{v}$.
On using the formula $\dfrac{d}{dx}\dfrac{u}{v}=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}$ on the expression, we get:
$\Rightarrow \dfrac{\cos x\dfrac{d}{dx}1-1\dfrac{d}{dx}\cos x}{{{\cos }^{2}}x}$
Now we know that $\dfrac{d}{dx}k=0$, where $k$ is any constant value and $\dfrac{d}{dx}\cos x=-\sin x$ therefore on substituting them in the expression, we get:
$\Rightarrow \dfrac{\cos x\left( 0 \right)-1\left( -\sin x \right)}{{{\cos }^{2}}x}$
On simplifying the terms, we get:
$\Rightarrow \dfrac{\sin x}{{{\cos }^{2}}x}$
Now the denominator can be split up and written as:
$\Rightarrow \dfrac{\sin x}{\cos x\times \cos x}$
Now we know that $\dfrac{\sin x}{\cos x}=\tan x$, therefore on substituting, we get:
$\Rightarrow \dfrac{\tan x}{\cos x}$
Now we know that $\dfrac{1}{\cos x}=\sec x$ therefore, on substituting, we get:
$\Rightarrow \sec x\tan x$, which is the required derivative.
Therefore, we can write:
$\Rightarrow \dfrac{d}{dx}\sec x=\sec x\tan x$
Note: It is to be remembered that the function we used to solve the expression is called as the quotient rule. There also exists another rule which is known as the product rule which deals with expressions in the form of $uv$ and has formula $\dfrac{d}{dx}uv=u\dfrac{dv}{dx}+v\dfrac{du}{dx}$. It is to be noted that the terms $u$ and $v$ are also written as $f\left( x \right)$ and $g\left( x \right)$ in some solutions.
Complete step-by-step solution:
We have the term given to us as:
$\Rightarrow \sec x$
Since we have to find the derivative of the term, it can be written as:
$\Rightarrow \dfrac{d}{dx}\sec x$
Now we know that $\sec x=\dfrac{1}{\cos x}$ therefore, on substituting, we get:
$\Rightarrow \dfrac{d}{dx}\dfrac{1}{\cos x}$
We can see that the expression is in the form of the derivative of $\dfrac{u}{v}$.
On using the formula $\dfrac{d}{dx}\dfrac{u}{v}=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}$ on the expression, we get:
$\Rightarrow \dfrac{\cos x\dfrac{d}{dx}1-1\dfrac{d}{dx}\cos x}{{{\cos }^{2}}x}$
Now we know that $\dfrac{d}{dx}k=0$, where $k$ is any constant value and $\dfrac{d}{dx}\cos x=-\sin x$ therefore on substituting them in the expression, we get:
$\Rightarrow \dfrac{\cos x\left( 0 \right)-1\left( -\sin x \right)}{{{\cos }^{2}}x}$
On simplifying the terms, we get:
$\Rightarrow \dfrac{\sin x}{{{\cos }^{2}}x}$
Now the denominator can be split up and written as:
$\Rightarrow \dfrac{\sin x}{\cos x\times \cos x}$
Now we know that $\dfrac{\sin x}{\cos x}=\tan x$, therefore on substituting, we get:
$\Rightarrow \dfrac{\tan x}{\cos x}$
Now we know that $\dfrac{1}{\cos x}=\sec x$ therefore, on substituting, we get:
$\Rightarrow \sec x\tan x$, which is the required derivative.
Therefore, we can write:
$\Rightarrow \dfrac{d}{dx}\sec x=\sec x\tan x$
Note: It is to be remembered that the function we used to solve the expression is called as the quotient rule. There also exists another rule which is known as the product rule which deals with expressions in the form of $uv$ and has formula $\dfrac{d}{dx}uv=u\dfrac{dv}{dx}+v\dfrac{du}{dx}$. It is to be noted that the terms $u$ and $v$ are also written as $f\left( x \right)$ and $g\left( x \right)$ in some solutions.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

