Answer
Verified
460.5k+ views
Hint:An orbital is the quantum mechanical refinement of Bohr’s orbit. In contrast to his concept of a circular orbit with a fixed radius, orbitals are mathematically derived regions of space with different probabilities of containing an electron. The d orbital contains 10 electrons. The d orbital is a clover shape because the electron is pushed out four times during the rotation.
Complete step by step answer:
The d orbital has ten protons to complete a fourth level of tetrahedral structure. With three spin aligned protons, it would have a spherical shape, yet four times during the rotation will have gluons that align with protons of the opposite spin to force an electron.
Now, we see the figure of all d-orbitals except ${d_{{z^2}}}$ because it has four lobes and has only two lobes.
From the above figure, we see that the d-orbitals are in different shapes. ${d_{{z^2}}}$orbital has a different shape from rest of all d-orbitals.
${d_{{z^2}}}$ degenerate with other d orbitals, it has no nodal planes, instead it has 2 nodal cones. Instead of having 4 lobes, it has 2 lobes and 1 ring. That’s why this orbital is so different from the rest.
Hence, option (B) is the correct answer.
Note:The standard procedure in differential calculus is to use a linear combination of two functions to produce one independent one. So ${d_{{z^2}}}$ looks different because it is a linear combination of two functions. In this orbital, 2 lobes lie on the z-axis as we see.
Complete step by step answer:
The d orbital has ten protons to complete a fourth level of tetrahedral structure. With three spin aligned protons, it would have a spherical shape, yet four times during the rotation will have gluons that align with protons of the opposite spin to force an electron.
Now, we see the figure of all d-orbitals except ${d_{{z^2}}}$ because it has four lobes and has only two lobes.
From the above figure, we see that the d-orbitals are in different shapes. ${d_{{z^2}}}$orbital has a different shape from rest of all d-orbitals.
${d_{{z^2}}}$ degenerate with other d orbitals, it has no nodal planes, instead it has 2 nodal cones. Instead of having 4 lobes, it has 2 lobes and 1 ring. That’s why this orbital is so different from the rest.
Hence, option (B) is the correct answer.
Note:The standard procedure in differential calculus is to use a linear combination of two functions to produce one independent one. So ${d_{{z^2}}}$ looks different because it is a linear combination of two functions. In this orbital, 2 lobes lie on the z-axis as we see.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE