Answer
Verified
458.4k+ views
Hint: We will use inequalities simultaneously. First, we will use the relation 32 > 31 and after that we will raise the powers on both sides by 12. Similarly, 17 > 16 will be the next relation and again we will raise the powers by 17 both sides. We will convert the terms in the powers of 2 and then we will use the algebraic formula ${\left( {{a^m}} \right)^n} = {a^{mn}}$. Now, we will substitute the powers of 2 in any one of the equations and we will get the greater term.
Complete step-by-step answer:
We need to find the greater term between \[{\left( {31} \right)^{12}}\]and ${\left( {17} \right)^{17}}$.
Let us solve it by using the assumption of inequalities.
We know that 32 > 31.
We can write 32 as $2^5$. Putting this value in the above inequality, we get
$ \Rightarrow $$2^5$ > 31
Raising the power both sides by 12, we get
$ \Rightarrow $${\left( {{2^5}} \right)^{12}}$> ${\left( {31} \right)^{12}}$
We can write this equation by using the formula${\left( {{a^m}} \right)^n} = {a^{mn}}$as:
$ \Rightarrow {\left( 2 \right)^{60}}$> ${\left( {31} \right)^{12}}$ equation – (1)
Now, let us consider another inequality: 17 > 16
We can write 16 as $2^4$. Putting this value in the above inequality, we get
$ \Rightarrow $17 > $2^4$
Raising the power both sides by 17, we get
$ \Rightarrow $${\left( {17} \right)^{17}}$> ${\left( {{2^4}} \right)^{17}}$
We can write this equation by using the formula ${\left( {{a^m}} \right)^n} = {a^{mn}}$as:
$ \Rightarrow $${\left( {17} \right)^{17}}$> ${\left( 2 \right)^{68}}$ equation – (2)
Now, from observation, we can tell that ${\left( 2 \right)^{68}}$is greater than ${\left( 2 \right)^{60}}$i.e., ${\left( 2 \right)^{68}}$ > ${\left( 2 \right)^{60}}$.
Using the above relation and the upon combining equation (1) and (2), we get
$ \Rightarrow {\left( {17} \right)^{17}} > {\left( 2 \right)^{68}} > {\left( 2 \right)^{60}} > {\left( {31} \right)^{12}}$
Therefore, we have ${\left( {17} \right)^{17}}$> ${\left( {31} \right)^{12}}$.
Hence ${\left( {17} \right)^{17}}$is greater than ${\left( {31} \right)^{12}}$.
Note: In such questions, you may get caught up between the methods to solve this question. As you can solve this question by calculating the real values of the given terms by expanding the powers but it will be a very long and time taking procedure. Here, we assumed a number which is just greater than or equal to the number provided and there we established an inequality between them so as to make it a simple and quick way to reach the answer.
Complete step-by-step answer:
We need to find the greater term between \[{\left( {31} \right)^{12}}\]and ${\left( {17} \right)^{17}}$.
Let us solve it by using the assumption of inequalities.
We know that 32 > 31.
We can write 32 as $2^5$. Putting this value in the above inequality, we get
$ \Rightarrow $$2^5$ > 31
Raising the power both sides by 12, we get
$ \Rightarrow $${\left( {{2^5}} \right)^{12}}$> ${\left( {31} \right)^{12}}$
We can write this equation by using the formula${\left( {{a^m}} \right)^n} = {a^{mn}}$as:
$ \Rightarrow {\left( 2 \right)^{60}}$> ${\left( {31} \right)^{12}}$ equation – (1)
Now, let us consider another inequality: 17 > 16
We can write 16 as $2^4$. Putting this value in the above inequality, we get
$ \Rightarrow $17 > $2^4$
Raising the power both sides by 17, we get
$ \Rightarrow $${\left( {17} \right)^{17}}$> ${\left( {{2^4}} \right)^{17}}$
We can write this equation by using the formula ${\left( {{a^m}} \right)^n} = {a^{mn}}$as:
$ \Rightarrow $${\left( {17} \right)^{17}}$> ${\left( 2 \right)^{68}}$ equation – (2)
Now, from observation, we can tell that ${\left( 2 \right)^{68}}$is greater than ${\left( 2 \right)^{60}}$i.e., ${\left( 2 \right)^{68}}$ > ${\left( 2 \right)^{60}}$.
Using the above relation and the upon combining equation (1) and (2), we get
$ \Rightarrow {\left( {17} \right)^{17}} > {\left( 2 \right)^{68}} > {\left( 2 \right)^{60}} > {\left( {31} \right)^{12}}$
Therefore, we have ${\left( {17} \right)^{17}}$> ${\left( {31} \right)^{12}}$.
Hence ${\left( {17} \right)^{17}}$is greater than ${\left( {31} \right)^{12}}$.
Note: In such questions, you may get caught up between the methods to solve this question. As you can solve this question by calculating the real values of the given terms by expanding the powers but it will be a very long and time taking procedure. Here, we assumed a number which is just greater than or equal to the number provided and there we established an inequality between them so as to make it a simple and quick way to reach the answer.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE