Answer
Verified
448.5k+ views
Hint:
Consider the factorisation of each number. If there are factors other than one and the number itself, it is a composite number. If not, it is a prime number.
Complete step by step solution:
We are given three numbers.
We have to identify the composite number among them.
Composite numbers are those numbers which have factors other than one and the number itself.
Numbers which are not composite are called prime.
Let us check each number one by one.
First number is $23$.
We can see that the unique factorisation of $23$ is $1 \times 23$. This gives $1$ and $23$ as the only factors of $23$.
Therefore $23$ is a prime number.
Next number is $29$.
We can see that the unique factorisation of $29$ is $1 \times 29$. This gives $1$ and $29$ as the only factors of $29$.
Therefore $29$ is a prime number.
The last number is $32$.
The number $32$ can be expressed as a product in different ways.
They are $1 \times 32,2 \times 16,4 \times 8$.
So $32$ is not a prime number. It has factors other than one and itself, which are $2,4,8$ and $16$.
This gives, $32$ is a composite number.
Therefore the answer is option C.
Note:
The number one has no any factors other than itself. But one is considered neither as a prime nor as a composite number. In fact, one is the only number which is not a prime or composite. Since every even number has two as a factor, we can clearly say that every even number is a composite number.
Consider the factorisation of each number. If there are factors other than one and the number itself, it is a composite number. If not, it is a prime number.
Complete step by step solution:
We are given three numbers.
We have to identify the composite number among them.
Composite numbers are those numbers which have factors other than one and the number itself.
Numbers which are not composite are called prime.
Let us check each number one by one.
First number is $23$.
We can see that the unique factorisation of $23$ is $1 \times 23$. This gives $1$ and $23$ as the only factors of $23$.
Therefore $23$ is a prime number.
Next number is $29$.
We can see that the unique factorisation of $29$ is $1 \times 29$. This gives $1$ and $29$ as the only factors of $29$.
Therefore $29$ is a prime number.
The last number is $32$.
The number $32$ can be expressed as a product in different ways.
They are $1 \times 32,2 \times 16,4 \times 8$.
So $32$ is not a prime number. It has factors other than one and itself, which are $2,4,8$ and $16$.
This gives, $32$ is a composite number.
Therefore the answer is option C.
Note:
The number one has no any factors other than itself. But one is considered neither as a prime nor as a composite number. In fact, one is the only number which is not a prime or composite. Since every even number has two as a factor, we can clearly say that every even number is a composite number.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Students Also Read