Answer
Verified
441.3k+ views
Hint Transition metals shows variable number of oxidation state, when the transition metal ion of a compound present in their middle oxidation state, it can increase its oxidation state by losing electrons(oxidation) or can decrease its oxidation state by accepting electron(reduction). They show reactivity in both acidic and basic medium.Are the examples of amphoteric oxide.
Complete Step by step solution –
An amphoteric oxide is an oxide that reacts (dissolve) with both acid as well as base. Normally transition metal oxides are basic in nature. There are many transition metals (like copper, zinc and iron) which form amphoteric oxides. Chemical nature of oxide will be determined by the oxidation state of the central metal ion of oxide. The more electropositive the central metal the more basic the oxide, and the more electronegative the central metal ion the more acidic the oxide. In lower oxidation state transition metal oxide is basic in nature, while in higher oxidation state they are acidic in nature.
In $M{{n}_{2}}{{O}_{7}}$, $\text{M}{{\text{n}}^{\text{7+}}}$ ion present in their maximum oxidation state. It can only gain electrons, so this metal oxide will be acidic in nature.
Chromium metal ions show variation in oxidation state from +2 to +6. In $\text{Cr}{{\text{O}}_{\text{3}}}$, $\text{C}{{\text{r}}^{\text{+6}}}$ ion present in maximum oxidation state, so this oxide will be acidic in nature. However in $\text{C}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{3}}}$, $\text{C}{{\text{r}}^{\text{3+}}}$ present in middle oxidation state. $\text{C}{{\text{r}}^{\text{3+}}}$ Ion is amphoteric in nature. $\text{C}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{3}}}$ is insoluble in water. It soluble in acid form ${{\text{ }\!\![\!\!\text{ Cr(}{{\text{H}}_{\text{2}}}\text{O}{{\text{)}}_{\text{6}}}\text{ }\!\!]\!\!\text{ }}^{\text{3-}}}$ salt and also reacts with base to form salt of ${{\text{ }\!\![\!\!\text{ Cr(OH}{{\text{)}}_{\text{6}}}\text{ }\!\!]\!\!\text{ }}^{\text{3-}}}$. In $\text{CrO}$, $\text{C}{{\text{r}}^{\text{2+}}}$ ion present in the lowest oxidation state. So, this is a basic metal oxide.
In\[{{\text{V}}_{\text{2}}}{{\text{O}}_{\text{5}}}\], ${{\text{V}}^{\text{+5}}}$ ion is present in its highest oxidation state. However \[{{\text{V}}_{\text{2}}}{{\text{O}}_{\text{5}}}\] is amphoteric oxide but mainly acidic. \[{{\text{V}}_{\text{2}}}{{\text{O}}_{\text{5}}}\] Reacts with alkalis as well as acids gives $\text{VO}_{\text{4}}^{\text{3-}}$ and$\text{VO}_{\text{2}}^{\text{+}}$.
So, option (i) will be the correct option.
Note– nature of metal oxide is basic in nature because when they are dissolved in water they form metallic hydroxide. However, non-metal oxides are acidic in nature, after dissolving in water they form oxyacid.
Complete Step by step solution –
An amphoteric oxide is an oxide that reacts (dissolve) with both acid as well as base. Normally transition metal oxides are basic in nature. There are many transition metals (like copper, zinc and iron) which form amphoteric oxides. Chemical nature of oxide will be determined by the oxidation state of the central metal ion of oxide. The more electropositive the central metal the more basic the oxide, and the more electronegative the central metal ion the more acidic the oxide. In lower oxidation state transition metal oxide is basic in nature, while in higher oxidation state they are acidic in nature.
In $M{{n}_{2}}{{O}_{7}}$, $\text{M}{{\text{n}}^{\text{7+}}}$ ion present in their maximum oxidation state. It can only gain electrons, so this metal oxide will be acidic in nature.
Chromium metal ions show variation in oxidation state from +2 to +6. In $\text{Cr}{{\text{O}}_{\text{3}}}$, $\text{C}{{\text{r}}^{\text{+6}}}$ ion present in maximum oxidation state, so this oxide will be acidic in nature. However in $\text{C}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{3}}}$, $\text{C}{{\text{r}}^{\text{3+}}}$ present in middle oxidation state. $\text{C}{{\text{r}}^{\text{3+}}}$ Ion is amphoteric in nature. $\text{C}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{3}}}$ is insoluble in water. It soluble in acid form ${{\text{ }\!\![\!\!\text{ Cr(}{{\text{H}}_{\text{2}}}\text{O}{{\text{)}}_{\text{6}}}\text{ }\!\!]\!\!\text{ }}^{\text{3-}}}$ salt and also reacts with base to form salt of ${{\text{ }\!\![\!\!\text{ Cr(OH}{{\text{)}}_{\text{6}}}\text{ }\!\!]\!\!\text{ }}^{\text{3-}}}$. In $\text{CrO}$, $\text{C}{{\text{r}}^{\text{2+}}}$ ion present in the lowest oxidation state. So, this is a basic metal oxide.
In\[{{\text{V}}_{\text{2}}}{{\text{O}}_{\text{5}}}\], ${{\text{V}}^{\text{+5}}}$ ion is present in its highest oxidation state. However \[{{\text{V}}_{\text{2}}}{{\text{O}}_{\text{5}}}\] is amphoteric oxide but mainly acidic. \[{{\text{V}}_{\text{2}}}{{\text{O}}_{\text{5}}}\] Reacts with alkalis as well as acids gives $\text{VO}_{\text{4}}^{\text{3-}}$ and$\text{VO}_{\text{2}}^{\text{+}}$.
So, option (i) will be the correct option.
Note– nature of metal oxide is basic in nature because when they are dissolved in water they form metallic hydroxide. However, non-metal oxides are acidic in nature, after dissolving in water they form oxyacid.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE