Which of the following thermodynamic relations is correct?
a) $dG = VdP -SdT$
b) $dE = PdV + TdS$
c) $dH = -VdP + TdS$
d) $dG = VdP + SdT$
Answer
Verified
402.3k+ views
Hint : Gibbs Energy is the highest work that a thermodynamic system can operate at a fixed pressure and temperature. The reversible work in thermodynamics indicates a unique method in which work is taken out such that the system persists in perfect equilibrium with all its surroundings.
Complete step-by-step solution:
The relation between Gibbs free energy and enthalpy is given by:
$G = H - TS$
The relation of enthalpy is given by:
$H = E + PV$
Put the value of enthalpy in Gibbs free energy formula:
$G = E + PV - TS$
Differentiate above formula-
$dG = dE + PdV + VdP – TdS - SdT$……($1$)
As we know this relation,
$dq = dE - dW$…...($2$)
And work done is $dW = -PdV $ ..….($3$)
For reversible process,
$TdS = dq$ ……($4$)
Combining ($2$), ($3$) and ($4$)-
$TdS = dE + PdV$
$\implies dE + PdV – TdS = 0$……($5$)
From equation ($1$) and ($5$);
$dG = VdP -SdT$
Option (a) is correct.
Note: The Gibbs free energy estimate is the maximum number of non-expansion work obtained from a thermodynamically closed system. This maximum can be achieved only in a completely reversible manner. When a system changes reversibly from an initial position to a final position, the drop in Gibbs free energy equals the work performed by the system to its surroundings and subtracts the pressure forces' work.
Complete step-by-step solution:
The relation between Gibbs free energy and enthalpy is given by:
$G = H - TS$
The relation of enthalpy is given by:
$H = E + PV$
Put the value of enthalpy in Gibbs free energy formula:
$G = E + PV - TS$
Differentiate above formula-
$dG = dE + PdV + VdP – TdS - SdT$……($1$)
As we know this relation,
$dq = dE - dW$…...($2$)
And work done is $dW = -PdV $ ..….($3$)
For reversible process,
$TdS = dq$ ……($4$)
Combining ($2$), ($3$) and ($4$)-
$TdS = dE + PdV$
$\implies dE + PdV – TdS = 0$……($5$)
From equation ($1$) and ($5$);
$dG = VdP -SdT$
Option (a) is correct.
Note: The Gibbs free energy estimate is the maximum number of non-expansion work obtained from a thermodynamically closed system. This maximum can be achieved only in a completely reversible manner. When a system changes reversibly from an initial position to a final position, the drop in Gibbs free energy equals the work performed by the system to its surroundings and subtracts the pressure forces' work.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE