Which term of the AP : $3,8,13,18,...,$ is $78$ ?
Answer
Verified
511.2k+ views
Hint: Find the common difference of the AP first, and then apply the formula for the ${{r}^{th}}$ term of an Arithmetic Progression.
Complete step-by-step answer:
An Arithmetic Progression is any series of numbers, in which the successive terms have the same difference amongst them. For example, if we say that four numbers, $a,b,c,d$ are in an AP, or form an Arithmetic Progression, then it means that the differences between the successive terms, i.e. $a$ and $b$, $b$ and $c$, and $c$ and $d$ are all equal to each other.
Written mathematically, this simply means that $b-a=c-b=d-c$.
Now, we can say that the ${{r}^{th}}$ term of an AP can be written as : $a+(r-1)d$, where $a=$ the first term of the AP given, and $d=$ the common difference between the successive terms in the AP.
Thus, in this question, it will be wise to proceed with finding the common difference, or $d$ first. We can pick any two successive terms and do so.
Let’s pick the ${{1}^{st}}$ and ${{2}^{nd}}$ terms of the AP given. Thus, we have the common difference as $8-3=5$. Note that, it’ll be the same if we pick any other pair of consecutive terms. Even if we picked the ${{2}^{nd}}$ and ${{3}^{rd}}$ term, we’d get the common difference $d=13-8=5$. Hence, the common difference of this AP is $d=5.$
Now, we can clearly see that the first term of the AP given is $3$. Thus, $a=3$.
Now, we can simply substitute these values in the formula of the ${{r}^{th}}$ term, we’ll get the index of the term which is equal to $78$.
Therefore, $\begin{align}
& a+(r-1)d=78 \\
& \Rightarrow 3+(r-1)5=78 \\
& \Rightarrow (r-1)5=75 \\
& \Rightarrow r-1=15 \\
& \Rightarrow r=16. \\
\end{align}$
Therefore, we can see that $78$ is the ${{16}^{th}}$ term of the given AP.
Note: Be very cautious while applying the formula, the ${{r}^{th}}$term is given by multiplying $(r-1)$ with the common difference, not $r$. Students tend to mix up the two.
Complete step-by-step answer:
An Arithmetic Progression is any series of numbers, in which the successive terms have the same difference amongst them. For example, if we say that four numbers, $a,b,c,d$ are in an AP, or form an Arithmetic Progression, then it means that the differences between the successive terms, i.e. $a$ and $b$, $b$ and $c$, and $c$ and $d$ are all equal to each other.
Written mathematically, this simply means that $b-a=c-b=d-c$.
Now, we can say that the ${{r}^{th}}$ term of an AP can be written as : $a+(r-1)d$, where $a=$ the first term of the AP given, and $d=$ the common difference between the successive terms in the AP.
Thus, in this question, it will be wise to proceed with finding the common difference, or $d$ first. We can pick any two successive terms and do so.
Let’s pick the ${{1}^{st}}$ and ${{2}^{nd}}$ terms of the AP given. Thus, we have the common difference as $8-3=5$. Note that, it’ll be the same if we pick any other pair of consecutive terms. Even if we picked the ${{2}^{nd}}$ and ${{3}^{rd}}$ term, we’d get the common difference $d=13-8=5$. Hence, the common difference of this AP is $d=5.$
Now, we can clearly see that the first term of the AP given is $3$. Thus, $a=3$.
Now, we can simply substitute these values in the formula of the ${{r}^{th}}$ term, we’ll get the index of the term which is equal to $78$.
Therefore, $\begin{align}
& a+(r-1)d=78 \\
& \Rightarrow 3+(r-1)5=78 \\
& \Rightarrow (r-1)5=75 \\
& \Rightarrow r-1=15 \\
& \Rightarrow r=16. \\
\end{align}$
Therefore, we can see that $78$ is the ${{16}^{th}}$ term of the given AP.
Note: Be very cautious while applying the formula, the ${{r}^{th}}$term is given by multiplying $(r-1)$ with the common difference, not $r$. Students tend to mix up the two.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE