
Write dimension of force, density, velocity, work, pressure.
Answer
127.8k+ views
Hint: First of all, write the formula for the given quantities i.e., ${\text{force = mass}} {\times acceleration}$, ${\text{density = }}\dfrac{{{\text{mass}}}}{{{\text{volume}}}}$, ${\text{velocity = }}\dfrac{{{\text{change in displacement}}}}{{{\text{time}}}}$, ${\text{pressure = }}\dfrac{{{\text{force}}}}{{{\text{time}}}}$ and ${\text{pressure = }}\dfrac{{{\text{force}}}}{{{\text{time}}}}$and then write the dimensional formula for them.
Complete step by step solution:
${\text{density = }}\dfrac{{{\text{mass}}}}{{{\text{volume}}}}$Dimensions of a derived unit are the powers to which the fundamental units of mass (M), length (L), time (T) etc. must be raised to represent that unit.
Dimensional formula in actual is an expression that shows which fundamental units are required to represent the unit of a physical quantity.
(1) Formula for ${\text{force = mass}} {\times acceleration}$.
Dimensional formula for mass is ${\text{[}}{{\text{M}}^1}{{\text{L}}^0}{{\text{T}}^0}{\text{]}}$ and dimensional formula for acceleration is${\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$.
Thus, dimensional formula for force is ${\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$.
SI unit of force is ${\text{kg m }}{{\text{s}}^{{\text{ - 2}}}}$.
(2) Dimensional formula for mass is ${\text{[}}{{\text{M}}^1}{{\text{L}}^0}{{\text{T}}^0}{\text{]}}$ and dimensional formula for volume is ${\text{[}}{{\text{M}}^0}{{\text{L}}^3}{{\text{T}}^0}{\text{]}}$.
Thus, dimensional formula for density is ${\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{ - 3}}{{\text{T}}^0}{\text{]}}$.
SI unit of density is ${\text{kg }}{{\text{m}}^{{\text{ - 3}}}}$.
(3) Formula for ${\text{velocity = }}\dfrac{{{\text{change in displacement}}}}{{{\text{time}}}}$
Dimensional formula for displacement is ${\text{[}}{{\text{M}}^0}{{\text{L}}^1}{{\text{T}}^0}{\text{]}}$ and dimensional formula for time is ${\text{[}}{{\text{M}}^0}{{\text{L}}^0}{{\text{T}}^1}{\text{]}}$.
Thus, dimensional formula for velocity is ${\text{[}}{{\text{M}}^0}{{\text{L}}^1}{{\text{T}}^{ - 1}}{\text{]}}$.
SI unit of velocity is ${\text{m }}{{\text{s}}^{{\text{ - 1}}}}$.
(4) Formula for ${\text{work = force}} {\times distance}$
Dimensional formula for force is ${\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$ and dimensional formula for distance is ${\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{\text{0}}}{\text{]}}$.
Thus, dimensional formula for work is ${\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^2}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$.
SI unit of work is ${\text{kg }}{{\text{m}}^2}{\text{ }}{{\text{s}}^{ - 2}}$.
(5) Formula for ${\text{pressure = }}\dfrac{{{\text{force}}}}{{{\text{time}}}}$
Dimensional formula for force is ${\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$ and dimensional formula for time is ${\text{[}}{{\text{M}}^0}{{\text{L}}^0}{{\text{T}}^1}{\text{]}}$.
Thus, dimensional formula for pressure is ${\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{ - 1}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$.
SI unit of pressure is Pascal (${\text{Pa}}$).
Note: Dimensions are denoted with square brackets. In mechanics, mass, length and time are the basic quantities and the units used for the measurement of these quantities are known as fundamental units. Dimensional equation is that equation obtained by equating the physical quantity with its dimensional formula. For example, the dimensional formula for length is given as
${\text{[}}{{\text{M}}^0}{{\text{L}}^1}{{\text{T}}^0}{\text{]}}$ and the dimensional formula for area is ${\text{[}}{{\text{M}}^0}{{\text{L}}^2}{{\text{T}}^0}{\text{]}}$.
Complete step by step solution:
${\text{density = }}\dfrac{{{\text{mass}}}}{{{\text{volume}}}}$Dimensions of a derived unit are the powers to which the fundamental units of mass (M), length (L), time (T) etc. must be raised to represent that unit.
Dimensional formula in actual is an expression that shows which fundamental units are required to represent the unit of a physical quantity.
(1) Formula for ${\text{force = mass}} {\times acceleration}$.
Dimensional formula for mass is ${\text{[}}{{\text{M}}^1}{{\text{L}}^0}{{\text{T}}^0}{\text{]}}$ and dimensional formula for acceleration is${\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$.
Thus, dimensional formula for force is ${\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$.
SI unit of force is ${\text{kg m }}{{\text{s}}^{{\text{ - 2}}}}$.
(2) Dimensional formula for mass is ${\text{[}}{{\text{M}}^1}{{\text{L}}^0}{{\text{T}}^0}{\text{]}}$ and dimensional formula for volume is ${\text{[}}{{\text{M}}^0}{{\text{L}}^3}{{\text{T}}^0}{\text{]}}$.
Thus, dimensional formula for density is ${\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{ - 3}}{{\text{T}}^0}{\text{]}}$.
SI unit of density is ${\text{kg }}{{\text{m}}^{{\text{ - 3}}}}$.
(3) Formula for ${\text{velocity = }}\dfrac{{{\text{change in displacement}}}}{{{\text{time}}}}$
Dimensional formula for displacement is ${\text{[}}{{\text{M}}^0}{{\text{L}}^1}{{\text{T}}^0}{\text{]}}$ and dimensional formula for time is ${\text{[}}{{\text{M}}^0}{{\text{L}}^0}{{\text{T}}^1}{\text{]}}$.
Thus, dimensional formula for velocity is ${\text{[}}{{\text{M}}^0}{{\text{L}}^1}{{\text{T}}^{ - 1}}{\text{]}}$.
SI unit of velocity is ${\text{m }}{{\text{s}}^{{\text{ - 1}}}}$.
(4) Formula for ${\text{work = force}} {\times distance}$
Dimensional formula for force is ${\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$ and dimensional formula for distance is ${\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{\text{0}}}{\text{]}}$.
Thus, dimensional formula for work is ${\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^2}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$.
SI unit of work is ${\text{kg }}{{\text{m}}^2}{\text{ }}{{\text{s}}^{ - 2}}$.
(5) Formula for ${\text{pressure = }}\dfrac{{{\text{force}}}}{{{\text{time}}}}$
Dimensional formula for force is ${\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$ and dimensional formula for time is ${\text{[}}{{\text{M}}^0}{{\text{L}}^0}{{\text{T}}^1}{\text{]}}$.
Thus, dimensional formula for pressure is ${\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{ - 1}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$.
SI unit of pressure is Pascal (${\text{Pa}}$).
Note: Dimensions are denoted with square brackets. In mechanics, mass, length and time are the basic quantities and the units used for the measurement of these quantities are known as fundamental units. Dimensional equation is that equation obtained by equating the physical quantity with its dimensional formula. For example, the dimensional formula for length is given as
${\text{[}}{{\text{M}}^0}{{\text{L}}^1}{{\text{T}}^0}{\text{]}}$ and the dimensional formula for area is ${\text{[}}{{\text{M}}^0}{{\text{L}}^2}{{\text{T}}^0}{\text{]}}$.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Difference Between Solute and Solvent: JEE Main 2024

Absolute Pressure Formula - Explanation, and FAQs

Carbon Dioxide Formula - Definition, Uses and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

Class 11 JEE Main Physics Mock Test 2025

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

Laws of Motion Class 11 Notes: CBSE Physics Chapter 4
