Write dimension of force, density, velocity, work, pressure.
Answer
Verified
118.2k+ views
Hint: First of all, write the formula for the given quantities i.e., ${\text{force = mass}} {\times acceleration}$, ${\text{density = }}\dfrac{{{\text{mass}}}}{{{\text{volume}}}}$, ${\text{velocity = }}\dfrac{{{\text{change in displacement}}}}{{{\text{time}}}}$, ${\text{pressure = }}\dfrac{{{\text{force}}}}{{{\text{time}}}}$ and ${\text{pressure = }}\dfrac{{{\text{force}}}}{{{\text{time}}}}$and then write the dimensional formula for them.
Complete step by step solution:
${\text{density = }}\dfrac{{{\text{mass}}}}{{{\text{volume}}}}$Dimensions of a derived unit are the powers to which the fundamental units of mass (M), length (L), time (T) etc. must be raised to represent that unit.
Dimensional formula in actual is an expression that shows which fundamental units are required to represent the unit of a physical quantity.
(1) Formula for ${\text{force = mass}} {\times acceleration}$.
Dimensional formula for mass is ${\text{[}}{{\text{M}}^1}{{\text{L}}^0}{{\text{T}}^0}{\text{]}}$ and dimensional formula for acceleration is${\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$.
Thus, dimensional formula for force is ${\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$.
SI unit of force is ${\text{kg m }}{{\text{s}}^{{\text{ - 2}}}}$.
(2) Dimensional formula for mass is ${\text{[}}{{\text{M}}^1}{{\text{L}}^0}{{\text{T}}^0}{\text{]}}$ and dimensional formula for volume is ${\text{[}}{{\text{M}}^0}{{\text{L}}^3}{{\text{T}}^0}{\text{]}}$.
Thus, dimensional formula for density is ${\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{ - 3}}{{\text{T}}^0}{\text{]}}$.
SI unit of density is ${\text{kg }}{{\text{m}}^{{\text{ - 3}}}}$.
(3) Formula for ${\text{velocity = }}\dfrac{{{\text{change in displacement}}}}{{{\text{time}}}}$
Dimensional formula for displacement is ${\text{[}}{{\text{M}}^0}{{\text{L}}^1}{{\text{T}}^0}{\text{]}}$ and dimensional formula for time is ${\text{[}}{{\text{M}}^0}{{\text{L}}^0}{{\text{T}}^1}{\text{]}}$.
Thus, dimensional formula for velocity is ${\text{[}}{{\text{M}}^0}{{\text{L}}^1}{{\text{T}}^{ - 1}}{\text{]}}$.
SI unit of velocity is ${\text{m }}{{\text{s}}^{{\text{ - 1}}}}$.
(4) Formula for ${\text{work = force}} {\times distance}$
Dimensional formula for force is ${\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$ and dimensional formula for distance is ${\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{\text{0}}}{\text{]}}$.
Thus, dimensional formula for work is ${\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^2}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$.
SI unit of work is ${\text{kg }}{{\text{m}}^2}{\text{ }}{{\text{s}}^{ - 2}}$.
(5) Formula for ${\text{pressure = }}\dfrac{{{\text{force}}}}{{{\text{time}}}}$
Dimensional formula for force is ${\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$ and dimensional formula for time is ${\text{[}}{{\text{M}}^0}{{\text{L}}^0}{{\text{T}}^1}{\text{]}}$.
Thus, dimensional formula for pressure is ${\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{ - 1}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$.
SI unit of pressure is Pascal (${\text{Pa}}$).
Note: Dimensions are denoted with square brackets. In mechanics, mass, length and time are the basic quantities and the units used for the measurement of these quantities are known as fundamental units. Dimensional equation is that equation obtained by equating the physical quantity with its dimensional formula. For example, the dimensional formula for length is given as
${\text{[}}{{\text{M}}^0}{{\text{L}}^1}{{\text{T}}^0}{\text{]}}$ and the dimensional formula for area is ${\text{[}}{{\text{M}}^0}{{\text{L}}^2}{{\text{T}}^0}{\text{]}}$.
Complete step by step solution:
${\text{density = }}\dfrac{{{\text{mass}}}}{{{\text{volume}}}}$Dimensions of a derived unit are the powers to which the fundamental units of mass (M), length (L), time (T) etc. must be raised to represent that unit.
Dimensional formula in actual is an expression that shows which fundamental units are required to represent the unit of a physical quantity.
(1) Formula for ${\text{force = mass}} {\times acceleration}$.
Dimensional formula for mass is ${\text{[}}{{\text{M}}^1}{{\text{L}}^0}{{\text{T}}^0}{\text{]}}$ and dimensional formula for acceleration is${\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$.
Thus, dimensional formula for force is ${\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$.
SI unit of force is ${\text{kg m }}{{\text{s}}^{{\text{ - 2}}}}$.
(2) Dimensional formula for mass is ${\text{[}}{{\text{M}}^1}{{\text{L}}^0}{{\text{T}}^0}{\text{]}}$ and dimensional formula for volume is ${\text{[}}{{\text{M}}^0}{{\text{L}}^3}{{\text{T}}^0}{\text{]}}$.
Thus, dimensional formula for density is ${\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{ - 3}}{{\text{T}}^0}{\text{]}}$.
SI unit of density is ${\text{kg }}{{\text{m}}^{{\text{ - 3}}}}$.
(3) Formula for ${\text{velocity = }}\dfrac{{{\text{change in displacement}}}}{{{\text{time}}}}$
Dimensional formula for displacement is ${\text{[}}{{\text{M}}^0}{{\text{L}}^1}{{\text{T}}^0}{\text{]}}$ and dimensional formula for time is ${\text{[}}{{\text{M}}^0}{{\text{L}}^0}{{\text{T}}^1}{\text{]}}$.
Thus, dimensional formula for velocity is ${\text{[}}{{\text{M}}^0}{{\text{L}}^1}{{\text{T}}^{ - 1}}{\text{]}}$.
SI unit of velocity is ${\text{m }}{{\text{s}}^{{\text{ - 1}}}}$.
(4) Formula for ${\text{work = force}} {\times distance}$
Dimensional formula for force is ${\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$ and dimensional formula for distance is ${\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{\text{0}}}{\text{]}}$.
Thus, dimensional formula for work is ${\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^2}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$.
SI unit of work is ${\text{kg }}{{\text{m}}^2}{\text{ }}{{\text{s}}^{ - 2}}$.
(5) Formula for ${\text{pressure = }}\dfrac{{{\text{force}}}}{{{\text{time}}}}$
Dimensional formula for force is ${\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$ and dimensional formula for time is ${\text{[}}{{\text{M}}^0}{{\text{L}}^0}{{\text{T}}^1}{\text{]}}$.
Thus, dimensional formula for pressure is ${\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{ - 1}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$.
SI unit of pressure is Pascal (${\text{Pa}}$).
Note: Dimensions are denoted with square brackets. In mechanics, mass, length and time are the basic quantities and the units used for the measurement of these quantities are known as fundamental units. Dimensional equation is that equation obtained by equating the physical quantity with its dimensional formula. For example, the dimensional formula for length is given as
${\text{[}}{{\text{M}}^0}{{\text{L}}^1}{{\text{T}}^0}{\text{]}}$ and the dimensional formula for area is ${\text{[}}{{\text{M}}^0}{{\text{L}}^2}{{\text{T}}^0}{\text{]}}$.
Recently Updated Pages
JEE Main 2025: Application Form, Exam Dates, Eligibility, and More
Draw the structure of a butanone molecule class 10 chemistry JEE_Main
The probability of selecting a rotten apple randomly class 10 maths JEE_Main
Difference Between Vapor and Gas: JEE Main 2024
Area of an Octagon Formula - Explanation, and FAQs
Difference Between Solute and Solvent: JEE Main 2024
Trending doubts
Physics Average Value and RMS Value JEE Main 2025
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Electron Gain Enthalpy and Electron Affinity for JEE
Collision - Important Concepts and Tips for JEE
Clemmenson and Wolff Kishner Reductions for JEE
JEE Main Chemistry Exam Pattern 2025
Other Pages
NCERT Solutions for Class 11 Physics Chapter 4 Laws of Motion
NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane
NCERT Solutions for Class 11 Physics Chapter 13 Oscillations
JEE Advanced 2025 Revision Notes for Physics on Modern Physics
The diagram given shows how the net interaction force class 11 physics JEE_Main
An Lshaped glass tube is just immersed in flowing water class 11 physics JEE_Main