
Write dimension of force, density, velocity, work, pressure.
Answer
138.3k+ views
Hint: First of all, write the formula for the given quantities i.e., ${\text{force = mass}} {\times acceleration}$, ${\text{density = }}\dfrac{{{\text{mass}}}}{{{\text{volume}}}}$, ${\text{velocity = }}\dfrac{{{\text{change in displacement}}}}{{{\text{time}}}}$, ${\text{pressure = }}\dfrac{{{\text{force}}}}{{{\text{time}}}}$ and ${\text{pressure = }}\dfrac{{{\text{force}}}}{{{\text{time}}}}$and then write the dimensional formula for them.
Complete step by step solution:
${\text{density = }}\dfrac{{{\text{mass}}}}{{{\text{volume}}}}$Dimensions of a derived unit are the powers to which the fundamental units of mass (M), length (L), time (T) etc. must be raised to represent that unit.
Dimensional formula in actual is an expression that shows which fundamental units are required to represent the unit of a physical quantity.
(1) Formula for ${\text{force = mass}} {\times acceleration}$.
Dimensional formula for mass is ${\text{[}}{{\text{M}}^1}{{\text{L}}^0}{{\text{T}}^0}{\text{]}}$ and dimensional formula for acceleration is${\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$.
Thus, dimensional formula for force is ${\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$.
SI unit of force is ${\text{kg m }}{{\text{s}}^{{\text{ - 2}}}}$.
(2) Dimensional formula for mass is ${\text{[}}{{\text{M}}^1}{{\text{L}}^0}{{\text{T}}^0}{\text{]}}$ and dimensional formula for volume is ${\text{[}}{{\text{M}}^0}{{\text{L}}^3}{{\text{T}}^0}{\text{]}}$.
Thus, dimensional formula for density is ${\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{ - 3}}{{\text{T}}^0}{\text{]}}$.
SI unit of density is ${\text{kg }}{{\text{m}}^{{\text{ - 3}}}}$.
(3) Formula for ${\text{velocity = }}\dfrac{{{\text{change in displacement}}}}{{{\text{time}}}}$
Dimensional formula for displacement is ${\text{[}}{{\text{M}}^0}{{\text{L}}^1}{{\text{T}}^0}{\text{]}}$ and dimensional formula for time is ${\text{[}}{{\text{M}}^0}{{\text{L}}^0}{{\text{T}}^1}{\text{]}}$.
Thus, dimensional formula for velocity is ${\text{[}}{{\text{M}}^0}{{\text{L}}^1}{{\text{T}}^{ - 1}}{\text{]}}$.
SI unit of velocity is ${\text{m }}{{\text{s}}^{{\text{ - 1}}}}$.
(4) Formula for ${\text{work = force}} {\times distance}$
Dimensional formula for force is ${\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$ and dimensional formula for distance is ${\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{\text{0}}}{\text{]}}$.
Thus, dimensional formula for work is ${\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^2}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$.
SI unit of work is ${\text{kg }}{{\text{m}}^2}{\text{ }}{{\text{s}}^{ - 2}}$.
(5) Formula for ${\text{pressure = }}\dfrac{{{\text{force}}}}{{{\text{time}}}}$
Dimensional formula for force is ${\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$ and dimensional formula for time is ${\text{[}}{{\text{M}}^0}{{\text{L}}^0}{{\text{T}}^1}{\text{]}}$.
Thus, dimensional formula for pressure is ${\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{ - 1}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$.
SI unit of pressure is Pascal (${\text{Pa}}$).
Note: Dimensions are denoted with square brackets. In mechanics, mass, length and time are the basic quantities and the units used for the measurement of these quantities are known as fundamental units. Dimensional equation is that equation obtained by equating the physical quantity with its dimensional formula. For example, the dimensional formula for length is given as
${\text{[}}{{\text{M}}^0}{{\text{L}}^1}{{\text{T}}^0}{\text{]}}$ and the dimensional formula for area is ${\text{[}}{{\text{M}}^0}{{\text{L}}^2}{{\text{T}}^0}{\text{]}}$.
Complete step by step solution:
${\text{density = }}\dfrac{{{\text{mass}}}}{{{\text{volume}}}}$Dimensions of a derived unit are the powers to which the fundamental units of mass (M), length (L), time (T) etc. must be raised to represent that unit.
Dimensional formula in actual is an expression that shows which fundamental units are required to represent the unit of a physical quantity.
(1) Formula for ${\text{force = mass}} {\times acceleration}$.
Dimensional formula for mass is ${\text{[}}{{\text{M}}^1}{{\text{L}}^0}{{\text{T}}^0}{\text{]}}$ and dimensional formula for acceleration is${\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$.
Thus, dimensional formula for force is ${\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$.
SI unit of force is ${\text{kg m }}{{\text{s}}^{{\text{ - 2}}}}$.
(2) Dimensional formula for mass is ${\text{[}}{{\text{M}}^1}{{\text{L}}^0}{{\text{T}}^0}{\text{]}}$ and dimensional formula for volume is ${\text{[}}{{\text{M}}^0}{{\text{L}}^3}{{\text{T}}^0}{\text{]}}$.
Thus, dimensional formula for density is ${\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{ - 3}}{{\text{T}}^0}{\text{]}}$.
SI unit of density is ${\text{kg }}{{\text{m}}^{{\text{ - 3}}}}$.
(3) Formula for ${\text{velocity = }}\dfrac{{{\text{change in displacement}}}}{{{\text{time}}}}$
Dimensional formula for displacement is ${\text{[}}{{\text{M}}^0}{{\text{L}}^1}{{\text{T}}^0}{\text{]}}$ and dimensional formula for time is ${\text{[}}{{\text{M}}^0}{{\text{L}}^0}{{\text{T}}^1}{\text{]}}$.
Thus, dimensional formula for velocity is ${\text{[}}{{\text{M}}^0}{{\text{L}}^1}{{\text{T}}^{ - 1}}{\text{]}}$.
SI unit of velocity is ${\text{m }}{{\text{s}}^{{\text{ - 1}}}}$.
(4) Formula for ${\text{work = force}} {\times distance}$
Dimensional formula for force is ${\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$ and dimensional formula for distance is ${\text{[}}{{\text{M}}^{\text{0}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{\text{0}}}{\text{]}}$.
Thus, dimensional formula for work is ${\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^2}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$.
SI unit of work is ${\text{kg }}{{\text{m}}^2}{\text{ }}{{\text{s}}^{ - 2}}$.
(5) Formula for ${\text{pressure = }}\dfrac{{{\text{force}}}}{{{\text{time}}}}$
Dimensional formula for force is ${\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{\text{1}}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$ and dimensional formula for time is ${\text{[}}{{\text{M}}^0}{{\text{L}}^0}{{\text{T}}^1}{\text{]}}$.
Thus, dimensional formula for pressure is ${\text{[}}{{\text{M}}^{\text{1}}}{{\text{L}}^{ - 1}}{{\text{T}}^{{\text{ - 2}}}}{\text{]}}$.
SI unit of pressure is Pascal (${\text{Pa}}$).
Note: Dimensions are denoted with square brackets. In mechanics, mass, length and time are the basic quantities and the units used for the measurement of these quantities are known as fundamental units. Dimensional equation is that equation obtained by equating the physical quantity with its dimensional formula. For example, the dimensional formula for length is given as
${\text{[}}{{\text{M}}^0}{{\text{L}}^1}{{\text{T}}^0}{\text{]}}$ and the dimensional formula for area is ${\text{[}}{{\text{M}}^0}{{\text{L}}^2}{{\text{T}}^0}{\text{]}}$.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

At which height is gravity zero class 11 physics JEE_Main

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
