Write down all the subsets of the following sets $\{ 1,2,3,4,5,.....\infty \} $
1) $\{ a\} $
2) $\{ a,b\} $
3) $\{ 1,2,3\} $
4) $\emptyset $
Answer
Verified
482.4k+ views
Hint: If \[A\] and \[B\] are two sets, we define the subset “if \[A\] is a subset of \[B\] then, all members of \[A\] is a member of \[B\]”.Subset is denoted by \[A \subseteq B\] and \[\emptyset \] is the empty set.
Here we going to write subsets, for that, we use some rules,
The first rule is, “Empty set is a subset of every set”.
The second rule is, “The set itself is a subset of the set”.
Complete step-by-step answer:
1) \[\{ a\} \]
We can take \[A = \{ a\} \]
As we say the first rule, “empty set is a subset of every set”
That is
\[\emptyset \subseteq A\]
As we say the second rule, “the set itself is a subset for set”
\[\{ a\} \subseteq A\]
Hence \[\emptyset ,\{ a\} \] are the only subsets of \[A = \{ a\} \]
2) \[\{ a,b\} \]
We can take \[A = \{ a,b\} \]
As we say the first rule
\[\emptyset \subseteq A\]
The second rule,
\[\{ a,b\} \subseteq A\]
Also we can write,
\[\{ a\} \subseteq A\]
\[\{ b\} \subseteq A\]
Hence \[\emptyset ,\{ a,b\} ,\{ a\} ,\{ b\} \] are the subsets of set \[A = \{ a,b\} \]
3) \[\{ 1,2,3\} \]
We can take \[A = \{ 1,2,3\} \]
By the first rule,
\[\emptyset \subseteq A\]
In the second rule,
\[\{ 1,2,3\} \subseteq A\]
Then,
\[\{ 1\} \subseteq A\]
\[\{ 2\} \subseteq A\]
\[\{ 3\} \subseteq A\]
Hence \[\emptyset ,\{ 1,2,3\} ,\{ 1\} ,\{ 2\} ,\{ 3\} \] are the subsets of set \[A = \{ 1,2,3\} \]
4) \[\emptyset \]
It is different from other sets, \[\emptyset \] is the empty set.
Empty set has no elements inside the set.
Therefore it has no subsets.
Hence the set \[\emptyset \] has no subsets.
Note:The rule “Empty set is subset for every set” is called trivial subset.And the rule “the set itself is a subset of a set” is called improper subset.Here we can observe that the section (iv) has \[\emptyset \] is empty set it has no elements, But we can apply the first rule \[\emptyset \] is the subset for the set \[\emptyset \] (\[\emptyset \subseteq \emptyset \]) and also we apply the second rule \[\emptyset \] is the subset for the set \[\emptyset \] (\[\emptyset \subseteq \emptyset \]). Hence both rules are equal also it has no elements.
Here we going to write subsets, for that, we use some rules,
The first rule is, “Empty set is a subset of every set”.
The second rule is, “The set itself is a subset of the set”.
Complete step-by-step answer:
1) \[\{ a\} \]
We can take \[A = \{ a\} \]
As we say the first rule, “empty set is a subset of every set”
That is
\[\emptyset \subseteq A\]
As we say the second rule, “the set itself is a subset for set”
\[\{ a\} \subseteq A\]
Hence \[\emptyset ,\{ a\} \] are the only subsets of \[A = \{ a\} \]
2) \[\{ a,b\} \]
We can take \[A = \{ a,b\} \]
As we say the first rule
\[\emptyset \subseteq A\]
The second rule,
\[\{ a,b\} \subseteq A\]
Also we can write,
\[\{ a\} \subseteq A\]
\[\{ b\} \subseteq A\]
Hence \[\emptyset ,\{ a,b\} ,\{ a\} ,\{ b\} \] are the subsets of set \[A = \{ a,b\} \]
3) \[\{ 1,2,3\} \]
We can take \[A = \{ 1,2,3\} \]
By the first rule,
\[\emptyset \subseteq A\]
In the second rule,
\[\{ 1,2,3\} \subseteq A\]
Then,
\[\{ 1\} \subseteq A\]
\[\{ 2\} \subseteq A\]
\[\{ 3\} \subseteq A\]
Hence \[\emptyset ,\{ 1,2,3\} ,\{ 1\} ,\{ 2\} ,\{ 3\} \] are the subsets of set \[A = \{ 1,2,3\} \]
4) \[\emptyset \]
It is different from other sets, \[\emptyset \] is the empty set.
Empty set has no elements inside the set.
Therefore it has no subsets.
Hence the set \[\emptyset \] has no subsets.
Note:The rule “Empty set is subset for every set” is called trivial subset.And the rule “the set itself is a subset of a set” is called improper subset.Here we can observe that the section (iv) has \[\emptyset \] is empty set it has no elements, But we can apply the first rule \[\emptyset \] is the subset for the set \[\emptyset \] (\[\emptyset \subseteq \emptyset \]) and also we apply the second rule \[\emptyset \] is the subset for the set \[\emptyset \] (\[\emptyset \subseteq \emptyset \]). Hence both rules are equal also it has no elements.
Watch videos on
Write down all the subsets of the following sets $\{ 1,2,3,4,5,.....\infty \} $
1) $\{ a\} $
2) $\{ a,b\} $
3) $\{ 1,2,3\} $
4) $\emptyset $
1) $\{ a\} $
2) $\{ a,b\} $
3) $\{ 1,2,3\} $
4) $\emptyset $
Class 11 MATHS NCERT EXERCISE 1.3 (Question - 4) | Sets Class 11 Chapter 1 | NCERT | Ratan Kalra Sir
Subscribe
Share
likes
25 Views
1 year ago
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE