
Write down all the subsets of the following sets $\{ 1,2,3,4,5,.....\infty \} $
1) $\{ a\} $
2) $\{ a,b\} $
3) $\{ 1,2,3\} $
4) $\emptyset $
Answer
592.5k+ views
Hint: If \[A\] and \[B\] are two sets, we define the subset “if \[A\] is a subset of \[B\] then, all members of \[A\] is a member of \[B\]”.Subset is denoted by \[A \subseteq B\] and \[\emptyset \] is the empty set.
Here we going to write subsets, for that, we use some rules,
The first rule is, “Empty set is a subset of every set”.
The second rule is, “The set itself is a subset of the set”.
Complete step-by-step answer:
1) \[\{ a\} \]
We can take \[A = \{ a\} \]
As we say the first rule, “empty set is a subset of every set”
That is
\[\emptyset \subseteq A\]
As we say the second rule, “the set itself is a subset for set”
\[\{ a\} \subseteq A\]
Hence \[\emptyset ,\{ a\} \] are the only subsets of \[A = \{ a\} \]
2) \[\{ a,b\} \]
We can take \[A = \{ a,b\} \]
As we say the first rule
\[\emptyset \subseteq A\]
The second rule,
\[\{ a,b\} \subseteq A\]
Also we can write,
\[\{ a\} \subseteq A\]
\[\{ b\} \subseteq A\]
Hence \[\emptyset ,\{ a,b\} ,\{ a\} ,\{ b\} \] are the subsets of set \[A = \{ a,b\} \]
3) \[\{ 1,2,3\} \]
We can take \[A = \{ 1,2,3\} \]
By the first rule,
\[\emptyset \subseteq A\]
In the second rule,
\[\{ 1,2,3\} \subseteq A\]
Then,
\[\{ 1\} \subseteq A\]
\[\{ 2\} \subseteq A\]
\[\{ 3\} \subseteq A\]
Hence \[\emptyset ,\{ 1,2,3\} ,\{ 1\} ,\{ 2\} ,\{ 3\} \] are the subsets of set \[A = \{ 1,2,3\} \]
4) \[\emptyset \]
It is different from other sets, \[\emptyset \] is the empty set.
Empty set has no elements inside the set.
Therefore it has no subsets.
Hence the set \[\emptyset \] has no subsets.
Note:The rule “Empty set is subset for every set” is called trivial subset.And the rule “the set itself is a subset of a set” is called improper subset.Here we can observe that the section (iv) has \[\emptyset \] is empty set it has no elements, But we can apply the first rule \[\emptyset \] is the subset for the set \[\emptyset \] (\[\emptyset \subseteq \emptyset \]) and also we apply the second rule \[\emptyset \] is the subset for the set \[\emptyset \] (\[\emptyset \subseteq \emptyset \]). Hence both rules are equal also it has no elements.
Here we going to write subsets, for that, we use some rules,
The first rule is, “Empty set is a subset of every set”.
The second rule is, “The set itself is a subset of the set”.
Complete step-by-step answer:
1) \[\{ a\} \]
We can take \[A = \{ a\} \]
As we say the first rule, “empty set is a subset of every set”
That is
\[\emptyset \subseteq A\]
As we say the second rule, “the set itself is a subset for set”
\[\{ a\} \subseteq A\]
Hence \[\emptyset ,\{ a\} \] are the only subsets of \[A = \{ a\} \]
2) \[\{ a,b\} \]
We can take \[A = \{ a,b\} \]
As we say the first rule
\[\emptyset \subseteq A\]
The second rule,
\[\{ a,b\} \subseteq A\]
Also we can write,
\[\{ a\} \subseteq A\]
\[\{ b\} \subseteq A\]
Hence \[\emptyset ,\{ a,b\} ,\{ a\} ,\{ b\} \] are the subsets of set \[A = \{ a,b\} \]
3) \[\{ 1,2,3\} \]
We can take \[A = \{ 1,2,3\} \]
By the first rule,
\[\emptyset \subseteq A\]
In the second rule,
\[\{ 1,2,3\} \subseteq A\]
Then,
\[\{ 1\} \subseteq A\]
\[\{ 2\} \subseteq A\]
\[\{ 3\} \subseteq A\]
Hence \[\emptyset ,\{ 1,2,3\} ,\{ 1\} ,\{ 2\} ,\{ 3\} \] are the subsets of set \[A = \{ 1,2,3\} \]
4) \[\emptyset \]
It is different from other sets, \[\emptyset \] is the empty set.
Empty set has no elements inside the set.
Therefore it has no subsets.
Hence the set \[\emptyset \] has no subsets.
Note:The rule “Empty set is subset for every set” is called trivial subset.And the rule “the set itself is a subset of a set” is called improper subset.Here we can observe that the section (iv) has \[\emptyset \] is empty set it has no elements, But we can apply the first rule \[\emptyset \] is the subset for the set \[\emptyset \] (\[\emptyset \subseteq \emptyset \]) and also we apply the second rule \[\emptyset \] is the subset for the set \[\emptyset \] (\[\emptyset \subseteq \emptyset \]). Hence both rules are equal also it has no elements.
Watch videos on
Write down all the subsets of the following sets $\{ 1,2,3,4,5,.....\infty \} $
1) $\{ a\} $
2) $\{ a,b\} $
3) $\{ 1,2,3\} $
4) $\emptyset $
1) $\{ a\} $
2) $\{ a,b\} $
3) $\{ 1,2,3\} $
4) $\emptyset $

Class 11 MATHS NCERT EXERCISE 1.3 (Question - 4) | Sets Class 11 Chapter 1 | NCERT | Ratan Kalra Sir
Subscribe
likes
42 Views
2 years ago
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

