
Write Einstein’s photoelectric equation and mention which important features in photoelectric effect can be explained with the help of this equation. The maximum kinetic energy of the photoelectrons gets doubled when the wavelength of light incident on the surface changes from ${{\lambda }_{1}}\,to\,{{\lambda }_{2}}$. Derive the expressions for the threshold wavelength ${{\lambda }_{0}}$ and work function for the metal surface.
Answer
498.9k+ views
Hint: Einstein’s photoelectric equation is generally expressed in the terms of frequency we can express frequency in terms of wavelength and speed of light.
Formula used: $h\nu =h{{\nu }_{0}}+K.E$,
Where, c is speed of light,
h is planck’s constant,
K.E is kinetic energy,
\[\nu \] and \[{{\nu }_{0}}\] are incident frequency and threshold frequency respectively.
Complete step-by-step solution:
Einstein’s photoelectric equation is $h\nu =h{{\nu }_{0}}+K.E$
This equation explains that photoelectric emission will only take place when $\nu \ge {{\nu }_{0}}$ because if \[\nu \]<${{\nu }_{0}}$ then K.E will come out to be negative which is not possible. We can also see kinetic energy is directly proportional to frequency which explains the fact that kinetic energy only depends on the frequency of incident radiation.
Also, we can write $\nu $as $\dfrac{c}{\lambda }$.
Now, it is given that kinetic energy gets doubled when wavelength changes from ${{\lambda }_{1}}\,to\,{{\lambda }_{2}}$.
Putting in the above formula we get two equations.
$\dfrac{hc}{{{\lambda }_{1}}}=\dfrac{hc}{{{\lambda }_{0}}}+K.E\,$ …..(i)
$\dfrac{hc}{{{\lambda }_{2}}}=\dfrac{hc}{{{\lambda }_{0}}}+2K.E$ …..(ii)
Now, subtracting (ii) from twice of (i), we get
$\dfrac{2hc}{{{\lambda }_{1}}}-\dfrac{hc}{{{\lambda }_{2}}}=\dfrac{2hc}{{{\lambda }_{0}}}-\dfrac{hc}{{{\lambda }_{0}}}+2K.E-2K.E$
$\begin{align}
& \dfrac{2hc}{{{\lambda }_{1}}}-\dfrac{hc}{{{\lambda }_{2}}}=\dfrac{hc}{{{\lambda }_{0}}} \\
& \\
\end{align}$
$\begin{align}
& \dfrac{2}{{{\lambda }_{1}}}-\dfrac{1}{{{\lambda }_{2}}}=\dfrac{1}{{{\lambda }_{0}}} \\
& \\
\end{align}$
$\begin{align}
& \dfrac{2hc}{{{\lambda }_{1}}}-\dfrac{hc}{{{\lambda }_{2}}}=\dfrac{hc}{{{\lambda }_{0}}} \\
& \dfrac{2}{{{\lambda }_{1}}}-\dfrac{1}{{{\lambda }_{2}}}=\dfrac{1}{{{\lambda }_{0}}} \\
& \dfrac{2{{\lambda }_{2}}-{{\lambda }_{1}}}{{{\lambda }_{1}}{{\lambda }_{2}}}=\dfrac{1}{{{\lambda }_{0}}} \\
& {{\lambda }_{0}}=\dfrac{{{\lambda }_{1}}{{\lambda }_{2}}}{2{{\lambda }_{2}}-{{\lambda }_{1}}} \\
\end{align}$
Now, work function is given by the formula \[({{W}_{0}})=\dfrac{hc}{{{\lambda }_{0}}}\]
Putting the value of ${{\lambda }_{0}}$ from above we get,
${{W}_{0}}=hc(\dfrac{2{{\lambda }_{2}}-{{\lambda }_{1}}}{{{\lambda }_{1}}{{\lambda }_{2}}})$
Therefore, threshold wavelength ${{\lambda }_{0}}$ is $\dfrac{{{\lambda }_{1}}{{\lambda }_{2}}}{2{{\lambda }_{2}}-{{\lambda }_{1}}}$ and work function ${{W}_{0}}=hc(\dfrac{2{{\lambda }_{2}}-{{\lambda }_{1}}}{{{\lambda }_{1}}{{\lambda }_{2}}})$ is ${{W}_{0}}=hc(\dfrac{2{{\lambda }_{2}}-{{\lambda }_{1}}}{{{\lambda }_{1}}{{\lambda }_{2}}})$.
Note: If a similar question comes with numerical values and your work function or threshold wavelength comes out to be negative then you must know that they cannot be negative and you may have interchanged the value of wavelengths.
Formula used: $h\nu =h{{\nu }_{0}}+K.E$,
Where, c is speed of light,
h is planck’s constant,
K.E is kinetic energy,
\[\nu \] and \[{{\nu }_{0}}\] are incident frequency and threshold frequency respectively.
Complete step-by-step solution:
Einstein’s photoelectric equation is $h\nu =h{{\nu }_{0}}+K.E$
This equation explains that photoelectric emission will only take place when $\nu \ge {{\nu }_{0}}$ because if \[\nu \]<${{\nu }_{0}}$ then K.E will come out to be negative which is not possible. We can also see kinetic energy is directly proportional to frequency which explains the fact that kinetic energy only depends on the frequency of incident radiation.
Also, we can write $\nu $as $\dfrac{c}{\lambda }$.
Now, it is given that kinetic energy gets doubled when wavelength changes from ${{\lambda }_{1}}\,to\,{{\lambda }_{2}}$.
Putting in the above formula we get two equations.
$\dfrac{hc}{{{\lambda }_{1}}}=\dfrac{hc}{{{\lambda }_{0}}}+K.E\,$ …..(i)
$\dfrac{hc}{{{\lambda }_{2}}}=\dfrac{hc}{{{\lambda }_{0}}}+2K.E$ …..(ii)
Now, subtracting (ii) from twice of (i), we get
$\dfrac{2hc}{{{\lambda }_{1}}}-\dfrac{hc}{{{\lambda }_{2}}}=\dfrac{2hc}{{{\lambda }_{0}}}-\dfrac{hc}{{{\lambda }_{0}}}+2K.E-2K.E$
$\begin{align}
& \dfrac{2hc}{{{\lambda }_{1}}}-\dfrac{hc}{{{\lambda }_{2}}}=\dfrac{hc}{{{\lambda }_{0}}} \\
& \\
\end{align}$
$\begin{align}
& \dfrac{2}{{{\lambda }_{1}}}-\dfrac{1}{{{\lambda }_{2}}}=\dfrac{1}{{{\lambda }_{0}}} \\
& \\
\end{align}$
$\begin{align}
& \dfrac{2hc}{{{\lambda }_{1}}}-\dfrac{hc}{{{\lambda }_{2}}}=\dfrac{hc}{{{\lambda }_{0}}} \\
& \dfrac{2}{{{\lambda }_{1}}}-\dfrac{1}{{{\lambda }_{2}}}=\dfrac{1}{{{\lambda }_{0}}} \\
& \dfrac{2{{\lambda }_{2}}-{{\lambda }_{1}}}{{{\lambda }_{1}}{{\lambda }_{2}}}=\dfrac{1}{{{\lambda }_{0}}} \\
& {{\lambda }_{0}}=\dfrac{{{\lambda }_{1}}{{\lambda }_{2}}}{2{{\lambda }_{2}}-{{\lambda }_{1}}} \\
\end{align}$
Now, work function is given by the formula \[({{W}_{0}})=\dfrac{hc}{{{\lambda }_{0}}}\]
Putting the value of ${{\lambda }_{0}}$ from above we get,
${{W}_{0}}=hc(\dfrac{2{{\lambda }_{2}}-{{\lambda }_{1}}}{{{\lambda }_{1}}{{\lambda }_{2}}})$
Therefore, threshold wavelength ${{\lambda }_{0}}$ is $\dfrac{{{\lambda }_{1}}{{\lambda }_{2}}}{2{{\lambda }_{2}}-{{\lambda }_{1}}}$ and work function ${{W}_{0}}=hc(\dfrac{2{{\lambda }_{2}}-{{\lambda }_{1}}}{{{\lambda }_{1}}{{\lambda }_{2}}})$ is ${{W}_{0}}=hc(\dfrac{2{{\lambda }_{2}}-{{\lambda }_{1}}}{{{\lambda }_{1}}{{\lambda }_{2}}})$.
Note: If a similar question comes with numerical values and your work function or threshold wavelength comes out to be negative then you must know that they cannot be negative and you may have interchanged the value of wavelengths.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Who is Mukesh What is his dream Why does it look like class 12 english CBSE

Who was RajKumar Shukla Why did he come to Lucknow class 12 english CBSE

The word Maasai is derived from the word Maa Maasai class 12 social science CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

Which country did Danny Casey play for class 12 english CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE
