Answer
Verified
484.5k+ views
Hint: Einstein’s photoelectric equation is generally expressed in the terms of frequency we can express frequency in terms of wavelength and speed of light.
Formula used: $h\nu =h{{\nu }_{0}}+K.E$,
Where, c is speed of light,
h is planck’s constant,
K.E is kinetic energy,
\[\nu \] and \[{{\nu }_{0}}\] are incident frequency and threshold frequency respectively.
Complete step-by-step solution:
Einstein’s photoelectric equation is $h\nu =h{{\nu }_{0}}+K.E$
This equation explains that photoelectric emission will only take place when $\nu \ge {{\nu }_{0}}$ because if \[\nu \]<${{\nu }_{0}}$ then K.E will come out to be negative which is not possible. We can also see kinetic energy is directly proportional to frequency which explains the fact that kinetic energy only depends on the frequency of incident radiation.
Also, we can write $\nu $as $\dfrac{c}{\lambda }$.
Now, it is given that kinetic energy gets doubled when wavelength changes from ${{\lambda }_{1}}\,to\,{{\lambda }_{2}}$.
Putting in the above formula we get two equations.
$\dfrac{hc}{{{\lambda }_{1}}}=\dfrac{hc}{{{\lambda }_{0}}}+K.E\,$ …..(i)
$\dfrac{hc}{{{\lambda }_{2}}}=\dfrac{hc}{{{\lambda }_{0}}}+2K.E$ …..(ii)
Now, subtracting (ii) from twice of (i), we get
$\dfrac{2hc}{{{\lambda }_{1}}}-\dfrac{hc}{{{\lambda }_{2}}}=\dfrac{2hc}{{{\lambda }_{0}}}-\dfrac{hc}{{{\lambda }_{0}}}+2K.E-2K.E$
$\begin{align}
& \dfrac{2hc}{{{\lambda }_{1}}}-\dfrac{hc}{{{\lambda }_{2}}}=\dfrac{hc}{{{\lambda }_{0}}} \\
& \\
\end{align}$
$\begin{align}
& \dfrac{2}{{{\lambda }_{1}}}-\dfrac{1}{{{\lambda }_{2}}}=\dfrac{1}{{{\lambda }_{0}}} \\
& \\
\end{align}$
$\begin{align}
& \dfrac{2hc}{{{\lambda }_{1}}}-\dfrac{hc}{{{\lambda }_{2}}}=\dfrac{hc}{{{\lambda }_{0}}} \\
& \dfrac{2}{{{\lambda }_{1}}}-\dfrac{1}{{{\lambda }_{2}}}=\dfrac{1}{{{\lambda }_{0}}} \\
& \dfrac{2{{\lambda }_{2}}-{{\lambda }_{1}}}{{{\lambda }_{1}}{{\lambda }_{2}}}=\dfrac{1}{{{\lambda }_{0}}} \\
& {{\lambda }_{0}}=\dfrac{{{\lambda }_{1}}{{\lambda }_{2}}}{2{{\lambda }_{2}}-{{\lambda }_{1}}} \\
\end{align}$
Now, work function is given by the formula \[({{W}_{0}})=\dfrac{hc}{{{\lambda }_{0}}}\]
Putting the value of ${{\lambda }_{0}}$ from above we get,
${{W}_{0}}=hc(\dfrac{2{{\lambda }_{2}}-{{\lambda }_{1}}}{{{\lambda }_{1}}{{\lambda }_{2}}})$
Therefore, threshold wavelength ${{\lambda }_{0}}$ is $\dfrac{{{\lambda }_{1}}{{\lambda }_{2}}}{2{{\lambda }_{2}}-{{\lambda }_{1}}}$ and work function ${{W}_{0}}=hc(\dfrac{2{{\lambda }_{2}}-{{\lambda }_{1}}}{{{\lambda }_{1}}{{\lambda }_{2}}})$ is ${{W}_{0}}=hc(\dfrac{2{{\lambda }_{2}}-{{\lambda }_{1}}}{{{\lambda }_{1}}{{\lambda }_{2}}})$.
Note: If a similar question comes with numerical values and your work function or threshold wavelength comes out to be negative then you must know that they cannot be negative and you may have interchanged the value of wavelengths.
Formula used: $h\nu =h{{\nu }_{0}}+K.E$,
Where, c is speed of light,
h is planck’s constant,
K.E is kinetic energy,
\[\nu \] and \[{{\nu }_{0}}\] are incident frequency and threshold frequency respectively.
Complete step-by-step solution:
Einstein’s photoelectric equation is $h\nu =h{{\nu }_{0}}+K.E$
This equation explains that photoelectric emission will only take place when $\nu \ge {{\nu }_{0}}$ because if \[\nu \]<${{\nu }_{0}}$ then K.E will come out to be negative which is not possible. We can also see kinetic energy is directly proportional to frequency which explains the fact that kinetic energy only depends on the frequency of incident radiation.
Also, we can write $\nu $as $\dfrac{c}{\lambda }$.
Now, it is given that kinetic energy gets doubled when wavelength changes from ${{\lambda }_{1}}\,to\,{{\lambda }_{2}}$.
Putting in the above formula we get two equations.
$\dfrac{hc}{{{\lambda }_{1}}}=\dfrac{hc}{{{\lambda }_{0}}}+K.E\,$ …..(i)
$\dfrac{hc}{{{\lambda }_{2}}}=\dfrac{hc}{{{\lambda }_{0}}}+2K.E$ …..(ii)
Now, subtracting (ii) from twice of (i), we get
$\dfrac{2hc}{{{\lambda }_{1}}}-\dfrac{hc}{{{\lambda }_{2}}}=\dfrac{2hc}{{{\lambda }_{0}}}-\dfrac{hc}{{{\lambda }_{0}}}+2K.E-2K.E$
$\begin{align}
& \dfrac{2hc}{{{\lambda }_{1}}}-\dfrac{hc}{{{\lambda }_{2}}}=\dfrac{hc}{{{\lambda }_{0}}} \\
& \\
\end{align}$
$\begin{align}
& \dfrac{2}{{{\lambda }_{1}}}-\dfrac{1}{{{\lambda }_{2}}}=\dfrac{1}{{{\lambda }_{0}}} \\
& \\
\end{align}$
$\begin{align}
& \dfrac{2hc}{{{\lambda }_{1}}}-\dfrac{hc}{{{\lambda }_{2}}}=\dfrac{hc}{{{\lambda }_{0}}} \\
& \dfrac{2}{{{\lambda }_{1}}}-\dfrac{1}{{{\lambda }_{2}}}=\dfrac{1}{{{\lambda }_{0}}} \\
& \dfrac{2{{\lambda }_{2}}-{{\lambda }_{1}}}{{{\lambda }_{1}}{{\lambda }_{2}}}=\dfrac{1}{{{\lambda }_{0}}} \\
& {{\lambda }_{0}}=\dfrac{{{\lambda }_{1}}{{\lambda }_{2}}}{2{{\lambda }_{2}}-{{\lambda }_{1}}} \\
\end{align}$
Now, work function is given by the formula \[({{W}_{0}})=\dfrac{hc}{{{\lambda }_{0}}}\]
Putting the value of ${{\lambda }_{0}}$ from above we get,
${{W}_{0}}=hc(\dfrac{2{{\lambda }_{2}}-{{\lambda }_{1}}}{{{\lambda }_{1}}{{\lambda }_{2}}})$
Therefore, threshold wavelength ${{\lambda }_{0}}$ is $\dfrac{{{\lambda }_{1}}{{\lambda }_{2}}}{2{{\lambda }_{2}}-{{\lambda }_{1}}}$ and work function ${{W}_{0}}=hc(\dfrac{2{{\lambda }_{2}}-{{\lambda }_{1}}}{{{\lambda }_{1}}{{\lambda }_{2}}})$ is ${{W}_{0}}=hc(\dfrac{2{{\lambda }_{2}}-{{\lambda }_{1}}}{{{\lambda }_{1}}{{\lambda }_{2}}})$.
Note: If a similar question comes with numerical values and your work function or threshold wavelength comes out to be negative then you must know that they cannot be negative and you may have interchanged the value of wavelengths.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE