Answer
Verified
497.1k+ views
Hint: Let’s consider a two triangles PQR and ABC, such that $\angle Q={{90}^{\circ }}$ and AB = PQ and BC = QR then find out using Pythagoras theorem AC = PR, then use congruence to prove that $\angle B={{90}^{\circ }}$ .
Complete step-by-step answer:
The statement of the common Pythagoras theorem is that in a triangle, if the square of one side is equal to the sum of the squares of the other two sides, then the angle opposite to that side is the right angle.
Now we will prove it.
Consider a triangle ABC in which $A{{C}^{2}}=A{{B}^{2}}+B{{C}^{2}}$.
In this we have to prove that angle of B is ${{90}^{\circ }}.$
Now we will start by constructing a triangle PQR which is right angled at Q such that PQ = AB and QR = BC, as shown below:
So, by using Pythagoras theorem in triangle PQR we can say that,
$P{{R}^{2}}=P{{Q}^{2}}+Q{{R}^{2}}$ as the angle Q is ${{90}^{\circ }}$ .
Now by constructing we said that PQ = AB and QR = BC then,
$P{{R}^{2}}=A{{B}^{2}}+B{{C}^{2}}$
So, we can say that $P{{R}^{2}}=A{{C}^{2}}$ as $A{{C}^{2}}=A{{B}^{2}}+A{{C}^{2}}$ was given.
Hence, PR = AC.
Now in triangle ABC and PQR we can say that,
i) AB = PQ which can be said by construction.
ii) BC = QR which can also be said by construction.
iii) AC = PR which is proved in the above section.
So, we can say that the triangle ABC and triangle PQR is congruent to each other using side-side –side congruence.
So, we can say that all sides and angles are equal by CPCT, i.e., corresponding part of concurrent triangle.
So, $\angle B=\angle Q$ as we proved that triangle ABC and triangle PQR is congruent to each other.
We know $\angle Q={{90}^{\circ }}$ by construction, therefore we can say that $\angle B={{90}^{\circ }}$.
Hence the converse of Pythagoras theorem is proved.
Note: Students generally get confused while proving congruence of two triangles. They should know the rules of congruence by heart to prove these types of questions. This is a theorem, so proving it should not be a problem after the lesson is completed. Generally students don’t construct a triangle and get confused about how to prove this.
Complete step-by-step answer:
The statement of the common Pythagoras theorem is that in a triangle, if the square of one side is equal to the sum of the squares of the other two sides, then the angle opposite to that side is the right angle.
Now we will prove it.
Consider a triangle ABC in which $A{{C}^{2}}=A{{B}^{2}}+B{{C}^{2}}$.
In this we have to prove that angle of B is ${{90}^{\circ }}.$
Now we will start by constructing a triangle PQR which is right angled at Q such that PQ = AB and QR = BC, as shown below:
So, by using Pythagoras theorem in triangle PQR we can say that,
$P{{R}^{2}}=P{{Q}^{2}}+Q{{R}^{2}}$ as the angle Q is ${{90}^{\circ }}$ .
Now by constructing we said that PQ = AB and QR = BC then,
$P{{R}^{2}}=A{{B}^{2}}+B{{C}^{2}}$
So, we can say that $P{{R}^{2}}=A{{C}^{2}}$ as $A{{C}^{2}}=A{{B}^{2}}+A{{C}^{2}}$ was given.
Hence, PR = AC.
Now in triangle ABC and PQR we can say that,
i) AB = PQ which can be said by construction.
ii) BC = QR which can also be said by construction.
iii) AC = PR which is proved in the above section.
So, we can say that the triangle ABC and triangle PQR is congruent to each other using side-side –side congruence.
So, we can say that all sides and angles are equal by CPCT, i.e., corresponding part of concurrent triangle.
So, $\angle B=\angle Q$ as we proved that triangle ABC and triangle PQR is congruent to each other.
We know $\angle Q={{90}^{\circ }}$ by construction, therefore we can say that $\angle B={{90}^{\circ }}$.
Hence the converse of Pythagoras theorem is proved.
Note: Students generally get confused while proving congruence of two triangles. They should know the rules of congruence by heart to prove these types of questions. This is a theorem, so proving it should not be a problem after the lesson is completed. Generally students don’t construct a triangle and get confused about how to prove this.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE