Answer
Verified
468.6k+ views
Hint: The sequence of each term gives as many different values.
Our discussion for this sequence is about the first three terms only. Yet the sequence \[{a_n}\] has n number of values, when we put different values to the sequence it gives a different number.
Now, we are going to substitute positive integers for n of order \[1,2,3\] that is \[{a_1},{a_2},{a_3}\].
Complete step-by-step answer:
1) \[{a_n} = 3n + 2\]
Take n values for first three terms
So, \[n = 1,2,3\] we get
If we take \[n = 1\] ,
\[ \Rightarrow {a_1} = 3(1) + 2\]
\[ \Rightarrow {a_1} = 3 + 2\]
\[ \Rightarrow {a_1} = 5\]
If we take \[n = 2\] ,
\[ \Rightarrow {a_2} = 3(2) + 2\]
\[ \Rightarrow {a_2} = 6 + 2\]
\[ \Rightarrow {a_2} = 8\]
If we take \[n = 3\] ,
\[ \Rightarrow {a_3} = 3(3) + 2\]
\[ \Rightarrow {a_3} = 9 + 2\]
\[ \Rightarrow {a_3} = 11\]
Hence we get, \[{a_1} = 5,{a_2} = 8,{a_3} = 11\]
The first three terms for the sequence \[{a_n} = 3n + 2\] is \[5,8,11\]
2) \[{a_n} = {n^2} + 1\]
Take n values for first three terms
So, \[n = 1,2,3\]
If we take \[n = 1\]
\[ \Rightarrow {a_1} = {1^2} + 1\]
\[ \Rightarrow {a_1} = 1 + 1\]
\[ \Rightarrow {a_1} = 2\]
If we take \[n = 2\] ,
\[ \Rightarrow {a_2} = {2^2} + 1\]
\[ \Rightarrow {a_2} = 4 + 1\]
\[ \Rightarrow {a_2} = 5\]
If we take \[n = 3\] ,
\[ \Rightarrow {a_3} = {3^2} + 1\]
\[ \Rightarrow {a_3} = 9 + 1\]
\[ \Rightarrow {a_3} = 10\]
Hence we get, \[{a_1} = 2,{a_2} = 5,{a_3} = 10\]
$\therefore $The first three terms for the sequence \[{a_n} = {n^2} + 1\] is \[2,5,10\]
Note:Form the above observation in first sequence \[{a_n} = 3n + 2\]
if n is an odd number, the sequence is odd.
If n is an even number, the sequence is even.
In same way, the sequence \[{a_n} = {n^2} + 1\]
If n is an odd number, the sequence is even.
If n is an even number, the sequence is odd.
Both the sequences have n number of terms, for our convenience we take the first three terms. In some cases, they ask randomly, give value for \[n = 10\] or \[n = 20\] for the sequence, we can find that also by substitution.
Our discussion for this sequence is about the first three terms only. Yet the sequence \[{a_n}\] has n number of values, when we put different values to the sequence it gives a different number.
Now, we are going to substitute positive integers for n of order \[1,2,3\] that is \[{a_1},{a_2},{a_3}\].
Complete step-by-step answer:
1) \[{a_n} = 3n + 2\]
Take n values for first three terms
So, \[n = 1,2,3\] we get
If we take \[n = 1\] ,
\[ \Rightarrow {a_1} = 3(1) + 2\]
\[ \Rightarrow {a_1} = 3 + 2\]
\[ \Rightarrow {a_1} = 5\]
If we take \[n = 2\] ,
\[ \Rightarrow {a_2} = 3(2) + 2\]
\[ \Rightarrow {a_2} = 6 + 2\]
\[ \Rightarrow {a_2} = 8\]
If we take \[n = 3\] ,
\[ \Rightarrow {a_3} = 3(3) + 2\]
\[ \Rightarrow {a_3} = 9 + 2\]
\[ \Rightarrow {a_3} = 11\]
Hence we get, \[{a_1} = 5,{a_2} = 8,{a_3} = 11\]
The first three terms for the sequence \[{a_n} = 3n + 2\] is \[5,8,11\]
2) \[{a_n} = {n^2} + 1\]
Take n values for first three terms
So, \[n = 1,2,3\]
If we take \[n = 1\]
\[ \Rightarrow {a_1} = {1^2} + 1\]
\[ \Rightarrow {a_1} = 1 + 1\]
\[ \Rightarrow {a_1} = 2\]
If we take \[n = 2\] ,
\[ \Rightarrow {a_2} = {2^2} + 1\]
\[ \Rightarrow {a_2} = 4 + 1\]
\[ \Rightarrow {a_2} = 5\]
If we take \[n = 3\] ,
\[ \Rightarrow {a_3} = {3^2} + 1\]
\[ \Rightarrow {a_3} = 9 + 1\]
\[ \Rightarrow {a_3} = 10\]
Hence we get, \[{a_1} = 2,{a_2} = 5,{a_3} = 10\]
$\therefore $The first three terms for the sequence \[{a_n} = {n^2} + 1\] is \[2,5,10\]
Note:Form the above observation in first sequence \[{a_n} = 3n + 2\]
if n is an odd number, the sequence is odd.
If n is an even number, the sequence is even.
In same way, the sequence \[{a_n} = {n^2} + 1\]
If n is an odd number, the sequence is even.
If n is an even number, the sequence is odd.
Both the sequences have n number of terms, for our convenience we take the first three terms. In some cases, they ask randomly, give value for \[n = 10\] or \[n = 20\] for the sequence, we can find that also by substitution.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE