How do we write the given expression in terms of $i$ : $\sqrt { - 45} $ ?
Answer
Verified
443.4k+ views
Hint: To solve this question, first we will try to observe the given expression by removing the negative sign from the expression, and then we will discuss the term how $\sqrt { - 1} $ is related to $i$. And finally, simplify the positive square root expression to get the final answer.
Complete step by step solution:
The given special symbol, $i$, is used to represent the square root of negative 1, $\sqrt { - 1} $.
As we know, there is no such thing in the real number universe as the $\sqrt { - 1} $ because there are no two identical numbers that we can multiply together to get -1 as the exact solution.
$1.1 = 1$ and $ - 1. - 1$ is also 1. Obviously $1. - 1 = - 1$ , but 1 and -1 are not the same number. They both have the same magnitude(distance from zero), but they are not identical.
So, when we have a number that involves a negative square root, math developed a plan to get around that problem by saying that anytime we run across that issue, we make our number positive so we can deal with it and put an $i$ at the end.
So, in this case:
$
\sqrt { - 45} \\
= \sqrt {45} \times \sqrt { - 1} \\
\\
$
As $i = \sqrt { - 1} $ :
$\therefore \sqrt { - 45} = \sqrt {45} i$
Since, $45 = 9 \times 5$ , the answer can be simplified to:
$\because \sqrt {45} i = \sqrt {9.5} i = 3\sqrt 5 i$
Hence, the given expression in terms of $i$ is $3\sqrt 5 i$.
Note:
Iota, $i$, is a Greek letter that is widely used in mathematics to denote the imaginary part of a complex number. Let's say we have an equation: ${x^2} + 1 = 0$ . In this case, the value of $x$ will be the square root of -1, which is fundamentally not possible.
Complete step by step solution:
The given special symbol, $i$, is used to represent the square root of negative 1, $\sqrt { - 1} $.
As we know, there is no such thing in the real number universe as the $\sqrt { - 1} $ because there are no two identical numbers that we can multiply together to get -1 as the exact solution.
$1.1 = 1$ and $ - 1. - 1$ is also 1. Obviously $1. - 1 = - 1$ , but 1 and -1 are not the same number. They both have the same magnitude(distance from zero), but they are not identical.
So, when we have a number that involves a negative square root, math developed a plan to get around that problem by saying that anytime we run across that issue, we make our number positive so we can deal with it and put an $i$ at the end.
So, in this case:
$
\sqrt { - 45} \\
= \sqrt {45} \times \sqrt { - 1} \\
\\
$
As $i = \sqrt { - 1} $ :
$\therefore \sqrt { - 45} = \sqrt {45} i$
Since, $45 = 9 \times 5$ , the answer can be simplified to:
$\because \sqrt {45} i = \sqrt {9.5} i = 3\sqrt 5 i$
Hence, the given expression in terms of $i$ is $3\sqrt 5 i$.
Note:
Iota, $i$, is a Greek letter that is widely used in mathematics to denote the imaginary part of a complex number. Let's say we have an equation: ${x^2} + 1 = 0$ . In this case, the value of $x$ will be the square root of -1, which is fundamentally not possible.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE