
Write the integral of \[\sqrt {{x^2} - {a^2}} \] with respect to \[x\], and hence evaluate \[\int {\sqrt {{x^2} - 8x + 7} } dx\].
Answer
573.6k+ views
Hint:
Here, we have to evaluate the given integral. We will use completing the square method to express the given integral in the form \[\sqrt {{x^2} - {a^2}} \]. Then, using the formula for integral of \[\sqrt {{x^2} - {a^2}} \], we will evaluate the value of the required integral.
Formula Used: We will use the following formulas:
1) The value of the integral of \[\sqrt {{x^2} - {a^2}} \] with respect to \[x\] is given as \[\int {\sqrt {{x^2} - {a^2}} } dx = \dfrac{x}{2}\sqrt {{x^2} - {a^2}} - \dfrac{{{a^2}}}{2}\log \left| {x + \sqrt {{x^2} - {a^2}} } \right| + C\], where \[C\] is a constant of integration.
2) The square of the difference of two numbers is given by the algebraic identity \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\].
Complete step by step solution:
First, we need to write the integral of \[\sqrt {{x^2} - {a^2}} \] with respect to \[x\].
Now, we need to use this formula to evaluate the integral \[\int {\sqrt {{x^2} - 8x + 7} } dx\].
We will use completing the square method to express the integral \[\int {\sqrt {{x^2} - 8x + 7} } dx\] in the form \[\sqrt {{x^2} - {a^2}} \].
To complete the square, we need to add and subtract the half of the coefficient of \[x\].
The coefficient of \[x\] is 8. The half of 8 is 4.
We will add and subtract the square of 4 in the expression under the root.
Therefore, the integral becomes
\[ \Rightarrow \int {\sqrt {{x^2} - 8x + 7} } dx = \int {\sqrt {{x^2} - 8x + 7 + {{\left( 4 \right)}^2} - {{\left( 4 \right)}^2}} } dx\]
Rewriting the expression, we get
\[ \Rightarrow \int {\sqrt {{x^2} - 8x + 7} } dx = \int {\sqrt {{{\left( x \right)}^2} - 2\left( x \right)\left( 4 \right) + {{\left( 4 \right)}^2} + 7 - {{\left( 4 \right)}^2}} } dx\]
We will use the algebraic identity \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\] to simplify the expression.
Substituting \[a = x\] and \[b = 4\] in the identity, we get
\[ \Rightarrow {\left( {x - 4} \right)^2} = {x^2} - 2\left( x \right)\left( 4 \right) + {\left( 4 \right)^2}\]
Substituting \[{x^2} - 2\left( x \right)\left( 4 \right) + {\left( 4 \right)^2} = {\left( {x - 4} \right)^2}\] in the value of the integral, we get
\[ \Rightarrow \int {\sqrt {{x^2} - 8x + 7} } dx = \int {\sqrt {{{\left( {x - 4} \right)}^2} + 7 - {{\left( 4 \right)}^2}} } dx\]
Applying the exponent on the base, we get
\[ \Rightarrow \int {\sqrt {{x^2} - 8x + 7} } dx = \int {\sqrt {{{\left( {x - 4} \right)}^2} + 7 - 16} } dx\]
Subtracting 16 from 7, we get
\[ \Rightarrow \int {\sqrt {{x^2} - 8x + 7} } dx = \int {\sqrt {{{\left( {x - 4} \right)}^2} - 9} } dx\]
Rewriting 9 as the square of 3, we get
\[ \Rightarrow \int {\sqrt {{x^2} - 8x + 7} } dx = \int {\sqrt {{{\left( {x - 4} \right)}^2} - {3^2}} } dx\]
We can observe that this integral is of the form \[\sqrt {{x^2} - {a^2}} \].
The value of the integral of \[\sqrt {{x^2} - {a^2}} \] with respect to \[x\] is given as \[\int {\sqrt {{x^2} - {a^2}} } dx = \dfrac{x}{2}\sqrt {{x^2} - {a^2}} - \dfrac{{{a^2}}}{2}\log \left| {x + \sqrt {{x^2} - {a^2}} } \right| + C\], where \[C\] is a constant of integration.
Substituting \[x - 4\] for \[x\], and 3 for \[a\] in the formula, we get
\[ \Rightarrow \int {\sqrt {{{\left( {x - 4} \right)}^2} - {3^2}} } dx = \dfrac{{\left( {x - 4} \right)}}{2}\sqrt {{{\left( {x - 4} \right)}^2} - {3^2}} - \dfrac{{{3^2}}}{2}\log \left| {\left( {x - 4} \right) + \sqrt {{{\left( {x - 4} \right)}^2} - {3^2}} } \right| + C\]
Simplifying the expression, we get
\[\begin{array}{l} \Rightarrow \int {\sqrt {{x^2} - 8x + 7} } dx = \dfrac{{x - 4}}{2}\sqrt {{x^2} - 8x + 7} - \dfrac{9}{2}\log \left| {x - 4 + \sqrt {{x^2} - 8x + 7} } \right| + C\\ \Rightarrow \int {\sqrt {{x^2} - 8x + 7} } dx = \dfrac{x}{2}\sqrt {{x^2} - 8x + 7} - \dfrac{4}{2}\sqrt {{x^2} - 8x + 7} - \dfrac{9}{2}\log \left| {x - 4 + \sqrt {{x^2} - 8x + 7} } \right| + C\\ \Rightarrow \int {\sqrt {{x^2} - 8x + 7} } dx = \dfrac{x}{2}\sqrt {{x^2} - 8x + 7} - 2\sqrt {{x^2} - 8x + 7} - \dfrac{9}{2}\log \left| {x - 4 + \sqrt {{x^2} - 8x + 7} } \right| + C\end{array}\]
Therefore, the value of the integral \[\int {\sqrt {{x^2} - 8x + 7} } dx\] is \[\dfrac{x}{2}\sqrt {{x^2} - 8x + 7} - 2\sqrt {{x^2} - 8x + 7} - \dfrac{9}{2}\log \left| {x - 4 + \sqrt {{x^2} - 8x + 7} } \right| + C\].
Note:
To complete the square, we added and subtracted the half of the coefficient of \[x\]. This is to be done only if the coefficient of \[{x^2}\] is 1. If the coefficient of \[{x^2}\] is not 1, divide the expression such that the coefficient of \[{x^2}\] is 1. Then, add and subtract the half of the coefficient of \[x\]. The number used to divide is a constant and can be taken outside the integral.
Here, we have to evaluate the given integral. We will use completing the square method to express the given integral in the form \[\sqrt {{x^2} - {a^2}} \]. Then, using the formula for integral of \[\sqrt {{x^2} - {a^2}} \], we will evaluate the value of the required integral.
Formula Used: We will use the following formulas:
1) The value of the integral of \[\sqrt {{x^2} - {a^2}} \] with respect to \[x\] is given as \[\int {\sqrt {{x^2} - {a^2}} } dx = \dfrac{x}{2}\sqrt {{x^2} - {a^2}} - \dfrac{{{a^2}}}{2}\log \left| {x + \sqrt {{x^2} - {a^2}} } \right| + C\], where \[C\] is a constant of integration.
2) The square of the difference of two numbers is given by the algebraic identity \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\].
Complete step by step solution:
First, we need to write the integral of \[\sqrt {{x^2} - {a^2}} \] with respect to \[x\].
Now, we need to use this formula to evaluate the integral \[\int {\sqrt {{x^2} - 8x + 7} } dx\].
We will use completing the square method to express the integral \[\int {\sqrt {{x^2} - 8x + 7} } dx\] in the form \[\sqrt {{x^2} - {a^2}} \].
To complete the square, we need to add and subtract the half of the coefficient of \[x\].
The coefficient of \[x\] is 8. The half of 8 is 4.
We will add and subtract the square of 4 in the expression under the root.
Therefore, the integral becomes
\[ \Rightarrow \int {\sqrt {{x^2} - 8x + 7} } dx = \int {\sqrt {{x^2} - 8x + 7 + {{\left( 4 \right)}^2} - {{\left( 4 \right)}^2}} } dx\]
Rewriting the expression, we get
\[ \Rightarrow \int {\sqrt {{x^2} - 8x + 7} } dx = \int {\sqrt {{{\left( x \right)}^2} - 2\left( x \right)\left( 4 \right) + {{\left( 4 \right)}^2} + 7 - {{\left( 4 \right)}^2}} } dx\]
We will use the algebraic identity \[{\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\] to simplify the expression.
Substituting \[a = x\] and \[b = 4\] in the identity, we get
\[ \Rightarrow {\left( {x - 4} \right)^2} = {x^2} - 2\left( x \right)\left( 4 \right) + {\left( 4 \right)^2}\]
Substituting \[{x^2} - 2\left( x \right)\left( 4 \right) + {\left( 4 \right)^2} = {\left( {x - 4} \right)^2}\] in the value of the integral, we get
\[ \Rightarrow \int {\sqrt {{x^2} - 8x + 7} } dx = \int {\sqrt {{{\left( {x - 4} \right)}^2} + 7 - {{\left( 4 \right)}^2}} } dx\]
Applying the exponent on the base, we get
\[ \Rightarrow \int {\sqrt {{x^2} - 8x + 7} } dx = \int {\sqrt {{{\left( {x - 4} \right)}^2} + 7 - 16} } dx\]
Subtracting 16 from 7, we get
\[ \Rightarrow \int {\sqrt {{x^2} - 8x + 7} } dx = \int {\sqrt {{{\left( {x - 4} \right)}^2} - 9} } dx\]
Rewriting 9 as the square of 3, we get
\[ \Rightarrow \int {\sqrt {{x^2} - 8x + 7} } dx = \int {\sqrt {{{\left( {x - 4} \right)}^2} - {3^2}} } dx\]
We can observe that this integral is of the form \[\sqrt {{x^2} - {a^2}} \].
The value of the integral of \[\sqrt {{x^2} - {a^2}} \] with respect to \[x\] is given as \[\int {\sqrt {{x^2} - {a^2}} } dx = \dfrac{x}{2}\sqrt {{x^2} - {a^2}} - \dfrac{{{a^2}}}{2}\log \left| {x + \sqrt {{x^2} - {a^2}} } \right| + C\], where \[C\] is a constant of integration.
Substituting \[x - 4\] for \[x\], and 3 for \[a\] in the formula, we get
\[ \Rightarrow \int {\sqrt {{{\left( {x - 4} \right)}^2} - {3^2}} } dx = \dfrac{{\left( {x - 4} \right)}}{2}\sqrt {{{\left( {x - 4} \right)}^2} - {3^2}} - \dfrac{{{3^2}}}{2}\log \left| {\left( {x - 4} \right) + \sqrt {{{\left( {x - 4} \right)}^2} - {3^2}} } \right| + C\]
Simplifying the expression, we get
\[\begin{array}{l} \Rightarrow \int {\sqrt {{x^2} - 8x + 7} } dx = \dfrac{{x - 4}}{2}\sqrt {{x^2} - 8x + 7} - \dfrac{9}{2}\log \left| {x - 4 + \sqrt {{x^2} - 8x + 7} } \right| + C\\ \Rightarrow \int {\sqrt {{x^2} - 8x + 7} } dx = \dfrac{x}{2}\sqrt {{x^2} - 8x + 7} - \dfrac{4}{2}\sqrt {{x^2} - 8x + 7} - \dfrac{9}{2}\log \left| {x - 4 + \sqrt {{x^2} - 8x + 7} } \right| + C\\ \Rightarrow \int {\sqrt {{x^2} - 8x + 7} } dx = \dfrac{x}{2}\sqrt {{x^2} - 8x + 7} - 2\sqrt {{x^2} - 8x + 7} - \dfrac{9}{2}\log \left| {x - 4 + \sqrt {{x^2} - 8x + 7} } \right| + C\end{array}\]
Therefore, the value of the integral \[\int {\sqrt {{x^2} - 8x + 7} } dx\] is \[\dfrac{x}{2}\sqrt {{x^2} - 8x + 7} - 2\sqrt {{x^2} - 8x + 7} - \dfrac{9}{2}\log \left| {x - 4 + \sqrt {{x^2} - 8x + 7} } \right| + C\].
Note:
To complete the square, we added and subtracted the half of the coefficient of \[x\]. This is to be done only if the coefficient of \[{x^2}\] is 1. If the coefficient of \[{x^2}\] is not 1, divide the expression such that the coefficient of \[{x^2}\] is 1. Then, add and subtract the half of the coefficient of \[x\]. The number used to divide is a constant and can be taken outside the integral.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

