Answer
Verified
437.7k+ views
Hint : Before stating the relation, derive the relation between the radius of curvature and the focal length of a mirror. This will help you understand better. Use the fact that when a parallel ray of light drops on a concave mirror, it passes through the focus of the mirror after reflection.
Complete step by step answer
The relation between focal length $\left( f \right)$ and radius of curvature $\left( R \right)$ of a spherical mirror is that the focal length is equal to half of the radius of curvature i.e. $f = \dfrac{R}{2}$ .
Let us derive this relation
Consider a concave mirror such that its radius of curvature is very much larger than the diameter of its aperture.
We can take help from the figure given.
Suppose a parallel ray of light is incident on the mirror as shown in the figure. Let this incident ray make an angle $\theta $ with normal to the surface of the mirror. Since this mirror is part of a circle, the normal drawn to the surface of the circle passes through the center $\left( C \right)$ of the mirror.
We know that rays of light parallel to the principal axis passing through the focus $\left( F \right)$ of a concave mirror, after reflection.
Since the law of reflection says that the angle of incidence and angle of reflection are equal.
Therefore, $\angle BAC = \angle FAC = \theta $ as shown in the given figure.
Since BA and PC are parallel, $\angle BAC = \angle ACF = \theta $ .
Therefore, from the exterior angle theorem $\angle AFN = \angle ACF + \angle CAF = 2\theta $
Now drop a normal CP from point A. Let the foot of this normal be N.
Here, $\tan \theta = \dfrac{{AN}}{{CN}} \Rightarrow AN = CN\tan \theta $ ............ $\left( 1 \right)$
$ \Rightarrow \tan 2\theta = \dfrac{{AN}}{{FN}} \Rightarrow AN = FN\tan 2\theta $ ............. $\left( 2 \right)$
From equation $\left( 1 \right)$ and equation, $\left( 2 \right)$ we get,
$CN\tan \theta = FN\tan 2\theta $
$ \Rightarrow \dfrac{{CN}}{{FN}} = \dfrac{{\tan 2\theta }}{{\tan \theta }}$ ............... $\left( 3 \right)$
Meanwhile, the radius of curvature is very much greater than the diameter of its aperture, NP is very small compared to $CN$ and $CP$ and $\theta $ will be a small angle.
Therefore, $CN \approx CP$ and $FN \approx FP$ .
For small angles $\tan \theta = \theta $ and $\tan 2\theta = 2\theta $ .
Therefore, the equation $\left( 3 \right)$ can be written as
$ \Rightarrow \dfrac{{CP}}{{FP}} = \dfrac{{2\theta }}{\theta }$
$ \Rightarrow FP = \dfrac{{CP}}{2}$
And $CP = R$ and $FP = f$ .
Hence, $f = \dfrac{R}{2}$.
Note
Note that this relation between the radius of curvature $\left( R \right)$ of a concave mirror and the focal length $\left( f \right)$ of the mirror, which is $f = \dfrac{R}{2}$ , is true only when the $R$ is much greater than the diameter of its aperture.
Complete step by step answer
The relation between focal length $\left( f \right)$ and radius of curvature $\left( R \right)$ of a spherical mirror is that the focal length is equal to half of the radius of curvature i.e. $f = \dfrac{R}{2}$ .
Let us derive this relation
Consider a concave mirror such that its radius of curvature is very much larger than the diameter of its aperture.
We can take help from the figure given.
Suppose a parallel ray of light is incident on the mirror as shown in the figure. Let this incident ray make an angle $\theta $ with normal to the surface of the mirror. Since this mirror is part of a circle, the normal drawn to the surface of the circle passes through the center $\left( C \right)$ of the mirror.
We know that rays of light parallel to the principal axis passing through the focus $\left( F \right)$ of a concave mirror, after reflection.
Since the law of reflection says that the angle of incidence and angle of reflection are equal.
Therefore, $\angle BAC = \angle FAC = \theta $ as shown in the given figure.
Since BA and PC are parallel, $\angle BAC = \angle ACF = \theta $ .
Therefore, from the exterior angle theorem $\angle AFN = \angle ACF + \angle CAF = 2\theta $
Now drop a normal CP from point A. Let the foot of this normal be N.
Here, $\tan \theta = \dfrac{{AN}}{{CN}} \Rightarrow AN = CN\tan \theta $ ............ $\left( 1 \right)$
$ \Rightarrow \tan 2\theta = \dfrac{{AN}}{{FN}} \Rightarrow AN = FN\tan 2\theta $ ............. $\left( 2 \right)$
From equation $\left( 1 \right)$ and equation, $\left( 2 \right)$ we get,
$CN\tan \theta = FN\tan 2\theta $
$ \Rightarrow \dfrac{{CN}}{{FN}} = \dfrac{{\tan 2\theta }}{{\tan \theta }}$ ............... $\left( 3 \right)$
Meanwhile, the radius of curvature is very much greater than the diameter of its aperture, NP is very small compared to $CN$ and $CP$ and $\theta $ will be a small angle.
Therefore, $CN \approx CP$ and $FN \approx FP$ .
For small angles $\tan \theta = \theta $ and $\tan 2\theta = 2\theta $ .
Therefore, the equation $\left( 3 \right)$ can be written as
$ \Rightarrow \dfrac{{CP}}{{FP}} = \dfrac{{2\theta }}{\theta }$
$ \Rightarrow FP = \dfrac{{CP}}{2}$
And $CP = R$ and $FP = f$ .
Hence, $f = \dfrac{R}{2}$.
Note
Note that this relation between the radius of curvature $\left( R \right)$ of a concave mirror and the focal length $\left( f \right)$ of the mirror, which is $f = \dfrac{R}{2}$ , is true only when the $R$ is much greater than the diameter of its aperture.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
What is BLO What is the full form of BLO class 8 social science CBSE