How do you write the remainder in synthetic division?
Answer
Verified
444k+ views
Hint: We at first check whether the constant term of the linear expression is a root of the polynomial or not. Then, we express the polynomial in terms of the product of its factors and adding the remainder at the end. Upon dividing by the linear expression, the numerator of the fraction remaining is the remainder.
Complete step by step answer:
Synthetic division is a way to divide a polynomial by a linear expression. This is done to find the roots or solution to the equation made by equating the polynomial to zero. First of all, we have to find a value of $x$ which makes the polynomial equal to $0$ . This means $x-\left( that\_value \right)$ is the factor of that polynomial. We then divide the polynomial by that linear expression by synthetic division method to get other roots.
Synthetic division is also used to find whether a polynomial is divisible by a linear expression or not. In general cases, there will be a quotient and a remainder.
Let us take the example of the polynomial ${{x}^{2}}+3x-12$ . Now, we want to divide the polynomial by the linear expression $x-3$ . If we put $x=3$ in the above assumed polynomial, we can see that the polynomial does not become zero. This means that $x=3$ is not a root of the equation ${{x}^{2}}+3x-12=0$ . That means, $x-3$ is not a factor of the polynomial ${{x}^{2}}+3x-12$ . So, ${{x}^{3}}+3x-12$ must give a remainder on division by $x-3$ . If we divide ${{x}^{2}}+3x-12$ by $x-3$ , we get $x+6$ as quotient and $6$ as remainder.
We can write the remainder in the form of a fraction. This is done by at first expression the division as a fraction, that is
$\dfrac{{{x}^{2}}+3x-12}{x-3}$
Since we know that $x+6$ is the quotient and $6$ is the remainder, we can write the polynomial ${{x}^{2}}+3x-12$ in the form $\left( x-3 \right)\left( x+6 \right)+6$ . The fraction thus becomes,
$\begin{align}
& \Rightarrow \dfrac{\left( x-3 \right)\left( x+6 \right)+6}{x-3} \\
& =\left( x+6 \right)+\dfrac{6}{x-3} \\
\end{align}$
Therefore, we can say that the remainder upon synthetic division can be shown by a fraction, where the numerator in the remainder and the denominator is the linear expression which is the divisor.
Note:
While expressing the remainder in the fraction form, we should factorise the polynomial correctly, and should remember to add the remainder at the end. The remainder can also be shown in another form. Taking the above example, we can show the synthetic division by $\left( x+6 \right)R6$ where the expression after $R$ is the remainder.
Complete step by step answer:
Synthetic division is a way to divide a polynomial by a linear expression. This is done to find the roots or solution to the equation made by equating the polynomial to zero. First of all, we have to find a value of $x$ which makes the polynomial equal to $0$ . This means $x-\left( that\_value \right)$ is the factor of that polynomial. We then divide the polynomial by that linear expression by synthetic division method to get other roots.
Synthetic division is also used to find whether a polynomial is divisible by a linear expression or not. In general cases, there will be a quotient and a remainder.
Let us take the example of the polynomial ${{x}^{2}}+3x-12$ . Now, we want to divide the polynomial by the linear expression $x-3$ . If we put $x=3$ in the above assumed polynomial, we can see that the polynomial does not become zero. This means that $x=3$ is not a root of the equation ${{x}^{2}}+3x-12=0$ . That means, $x-3$ is not a factor of the polynomial ${{x}^{2}}+3x-12$ . So, ${{x}^{3}}+3x-12$ must give a remainder on division by $x-3$ . If we divide ${{x}^{2}}+3x-12$ by $x-3$ , we get $x+6$ as quotient and $6$ as remainder.
We can write the remainder in the form of a fraction. This is done by at first expression the division as a fraction, that is
$\dfrac{{{x}^{2}}+3x-12}{x-3}$
Since we know that $x+6$ is the quotient and $6$ is the remainder, we can write the polynomial ${{x}^{2}}+3x-12$ in the form $\left( x-3 \right)\left( x+6 \right)+6$ . The fraction thus becomes,
$\begin{align}
& \Rightarrow \dfrac{\left( x-3 \right)\left( x+6 \right)+6}{x-3} \\
& =\left( x+6 \right)+\dfrac{6}{x-3} \\
\end{align}$
Therefore, we can say that the remainder upon synthetic division can be shown by a fraction, where the numerator in the remainder and the denominator is the linear expression which is the divisor.
Note:
While expressing the remainder in the fraction form, we should factorise the polynomial correctly, and should remember to add the remainder at the end. The remainder can also be shown in another form. Taking the above example, we can show the synthetic division by $\left( x+6 \right)R6$ where the expression after $R$ is the remainder.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE