Write the sequence with \[{n^{th}}\] term and \[{a_n} = 3 + 4n\].
A) \[7,{\text{ }}11,{\text{ }}15,{\text{ }}19,{\text{ }}....\]
B) \[7,{\text{ }}12,\;19,{\text{ }}24,{\text{ }}......\]
C) \[7,{\text{ }}11,{\text{ }}16,{\text{ }}19,{\text{ }}.....\]
D) \[7,\,{\text{ }}12,{\text{ }}17,{\text{ }}23,{\text{ }}.....\]
Answer
Verified
482.1k+ views
Hint:In this question we have to find the sequence with \[{n^{th}}\] term and \[{a_n} = 3 + 4n\].
The expression \[{({a_n})_{n \in N}}\] denotes a sequence whose \[{n^{th}}\] element is given by the variable \[{a_n}\].
The \[{n^{th}}\] element of the sequence is given.Therefore we can get the \[{1^{st}},{\text{ }}{2^{nd}},\,{\text{ }}{3^{rd}},\,\;{4^{th}},\;\;....\] elements of the sequence respectively by putting the value of \[n = 1,{\text{ }}2,{\text{ }}3,{\text{ }}4,{\text{ }}.....\] in the expression \[{a_n}\].
Complete step-by-step answer:
It is given that the \[{n^{th}}\] term of the sequence is \[{a_n} = 3 + 4n\].
We need to find out the elements of the sequence.
By putting the value of \[n = 1,{\text{ }}2,{\text{ }}3,{\text{ }}4,\,{\text{ }}.....\] in the expression \[{a_n}\], we will get the \[{1^{st}},\;{\text{ }}{2^{nd}},\,{\text{ }}{3^{rd}},{\text{ }}{4^{th}},\,\,....\] terms of the sequence respectively.
Putting the value of \[n = 1\] in \[{a_n}\] we get,
The first term of the sequence, \[{a_1} = 3 + 4 \times 1 = 3 + 4 = 7\]
Putting the value of \[n = 2\] in \[{a_n}\] we get,
The second term of the sequence, \[{a_2} = 3 + 4 \times 2 = 3 + 8 = 11\]
Putting the value of \[n = 3\] in \[{a_n}\] we get,
The third term of the sequence, \[{a_3} = 3 + 4 \times 3 = 3 + 12 = 15\]
Putting the value of \[n = 4\] in \[{a_n}\] we get,
The fourth term of the sequence, \[{a_4} = 3 + 4 \times 4 = 3 + 16 = 19\]
Similarly we can find all the elements of the sequence.
Thus we get, the elements of the sequence are, \[7,{\text{ }}11,\;{\text{ }}15,\;\;19,\;.....\]
Hence we get, the sequence with \[{n^{th}}\] term \[{a_n} = 3 + 4n\] is \[7,{\text{ }}11,\;{\text{ }}15,\;\;19,\;.....\] .
So, the correct answer is “Option A”.
Note:In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members. The number of elements is called the length of the sequence.
The expression \[{({a_n})_{n \in N}}\] denotes a sequence whose \[{n^{th}}\] element is given by the variable \[{a_n}\].
The expression \[{({a_n})_{n \in N}}\] denotes a sequence whose \[{n^{th}}\] element is given by the variable \[{a_n}\].
The \[{n^{th}}\] element of the sequence is given.Therefore we can get the \[{1^{st}},{\text{ }}{2^{nd}},\,{\text{ }}{3^{rd}},\,\;{4^{th}},\;\;....\] elements of the sequence respectively by putting the value of \[n = 1,{\text{ }}2,{\text{ }}3,{\text{ }}4,{\text{ }}.....\] in the expression \[{a_n}\].
Complete step-by-step answer:
It is given that the \[{n^{th}}\] term of the sequence is \[{a_n} = 3 + 4n\].
We need to find out the elements of the sequence.
By putting the value of \[n = 1,{\text{ }}2,{\text{ }}3,{\text{ }}4,\,{\text{ }}.....\] in the expression \[{a_n}\], we will get the \[{1^{st}},\;{\text{ }}{2^{nd}},\,{\text{ }}{3^{rd}},{\text{ }}{4^{th}},\,\,....\] terms of the sequence respectively.
Putting the value of \[n = 1\] in \[{a_n}\] we get,
The first term of the sequence, \[{a_1} = 3 + 4 \times 1 = 3 + 4 = 7\]
Putting the value of \[n = 2\] in \[{a_n}\] we get,
The second term of the sequence, \[{a_2} = 3 + 4 \times 2 = 3 + 8 = 11\]
Putting the value of \[n = 3\] in \[{a_n}\] we get,
The third term of the sequence, \[{a_3} = 3 + 4 \times 3 = 3 + 12 = 15\]
Putting the value of \[n = 4\] in \[{a_n}\] we get,
The fourth term of the sequence, \[{a_4} = 3 + 4 \times 4 = 3 + 16 = 19\]
Similarly we can find all the elements of the sequence.
Thus we get, the elements of the sequence are, \[7,{\text{ }}11,\;{\text{ }}15,\;\;19,\;.....\]
Hence we get, the sequence with \[{n^{th}}\] term \[{a_n} = 3 + 4n\] is \[7,{\text{ }}11,\;{\text{ }}15,\;\;19,\;.....\] .
So, the correct answer is “Option A”.
Note:In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members. The number of elements is called the length of the sequence.
The expression \[{({a_n})_{n \in N}}\] denotes a sequence whose \[{n^{th}}\] element is given by the variable \[{a_n}\].
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE